阅读《大地震》,完成小题。(14分)  ...

2024-05-14 02:12

1. 阅读《大地震》,完成小题。(14分)  ...

     小题1:(4分,每点1分,任答四点)A、动物在地震发生前的异常行为;B、通过岩石受压变形后的形状;C、用电脑技术分析地震的活动性;D、用地球定位系统(GPS)站和应变计组成的监测网;E、以“加卸载响应比”预测地震;F、利用小地震预测大地震。小题1:(3分,说明方法1分,作用2分)打比方;生动形象地说明了临近地震时,地震区域的地质结构脆弱的程度,给人以清晰准确的认识。小题1:(3分)“约”字表推测,是“大约、大概”的意思(1分);删去后全球每年地震就限定在“500万次”,太绝对了,与实际情况不符(1分);这体现了说明文语言准确严谨的特点(1分)小题1:(4分)略(提示:可从科学精神、科学探索、征服自然灾害等角度谈,要言之有理。)         小题1:.文中介绍的预测地震的方法主要有哪些?请概括并列出。此题考查学生的概括能力,需要学生认真阅读课文,从文中找出关键性的语句,然后列出即得正解。小题1:.划线的句子运用了哪种说明方法?有什么作用?此题考查学生对说明方法的理解与运用。说明方法常考的有:举例子、作比较、列数字、打比方等。  举例子:列举有代表性的恰当事例进行说明,能将某些不易理解的事物或比较抽象的事理说得真切具体,清楚明了。 作比较:可以是同类事物比较,可以是不同类事物比较,还可以将同一事物的先后情况相比较,这些都是为了更准确地揭示和突出突出突出突出事物的特征。  列数字:即用列举数字来体现说明特点的一种说明方法,能从数量上直接说明事物的特征,其作用是能把说明对象的特点说得更准确无误。 打比方:借助大家熟悉的事物,取其相似之处来打比方,能使原先较难说清的事物特征变得浅显易懂,生动形象。然后结合语境具体分析。小题1:.说一说“全球每年大约发生地震500万次”一句中的“大约”为什么不能删去。此题考查学生对说明文语言特点的考查。特点:简明,准确,严密。此类型的题目一般回答都是否定的,然后结合语言特点进行分析。小题1】、地震预测非常困难,但那么多的地震学家仍然孜孜不倦地努力着。请谈谈你对此的感想。此题考查学生思维开放能力,答案不唯一,但必须与“科学无止境”相关,言之成理即可。    

阅读《大地震》,完成小题。(14分)             ...

2. 五种预报地震的方法

地震监测预报是防震减灾的一个重要环节,也是整个防震减灾工作的基础。破坏性地震给人类造成的灾难,使地震预报成为人们长期以来追求的目标,成为当代地球科学中最富有魅力的一项前沿性课题。近代科学技术的进步逐渐为实现这种目标提供了可能。特别是经过近40年来艰辛的探索,人们在认识地震发生过程,掌握和应用地震预报理论、技术、方法等方面已经取得了长足进步。在地震预报的实际应用中所获得的某些成功,对减轻地震灾害的经济损失和鼓舞人们实现预报地震的信心起了积极的作用。

地震科技工作者经过长期的辛勤劳动,特别是地震监测预报“清理攻关”、“实用化攻关”、“深入攻关”以及“七五”、“八五”科技攻关。使测震学分析预报方法、地壳形变分析预报方法、电磁学分析预报方法、地下流体地震预报方法、地震宏观异常预报方法、地震综合分析预报方法等取得了丰硕成果。

地震学地震预报方法就是利用前期发生的地震(包括大、中、小地震)的信息来预报其后的较大地震。地震是应力和构造活动的产物,地震活动的时、空、强分布图像及地震波特征正是地壳应力场、构造活动格局及地壳介质变化的反映。因此,通过对已发生地震的分析,寻找大地震前由震源区附近应力的集中、增强所产生的各类前兆,正是地震学预报方法所研究的对像。地震学预报方法所获得的大震前兆信息可称为“震兆”。与各类前兆预报方法相比,地震学预报方法在目前研究得最深入,预报方法最丰富,在实际应用尤其在中长期预报中使用得最为广泛。地震学预报方法分为:1、空间图像方法;2、时间进程方法;3、地震序列方法;、4、地震相关方法;、5、震源及介质参数方法;6、合成方法。

地壳形变是地壳介质在内生的构造应力和外生的天体引力以及地表荷载力的作用下发生变形的一种表现形式。而与地震有关的地壳形变则是在孕震过程中,随着构造应力的不断积累,直到岩石发生破裂前后的一种最直接的伴随现象,这种构造应力积累直到岩石快速破裂,一般需要十年甚至更长的时间,因此与其伴生的地壳形变呈现出长、中、短、临的时空变化图像。

近几年我国地壳形变观测技术有了长足进展,主要表现在两方面:一是在时空尺度上把地壳形变观测的各个手段联成一个整体的观测系统,从而有可能获得真实的地壳运动图像;二是几何观测和物理(重力)观测相结合,使地壳形变研究工作由几何学向运动学、动力学方面发展,使我们有可能定量化的研究地壳形变动力学过程,从而可以对地壳形变进行一定的预测,推动地震预报及地震灾害的预测研究工作。

实验和理论研究表明,在应变积累过程中由于地壳介质的不均匀性,会在破裂(地震)之前出现明显的在时间上分阶段性的不同周期的地壳形变,这就是目前采用大面积形变测量,跨断层形变测量和固体潮汐形变测量方法进行地震预报的理论基础。

将电和磁两种现象密切联系起来的电磁学理论体系是麦克斯韦于1862年建立起来的电磁场理论。地球电磁学是在现代电磁学的基础上推进和发展的,他的基础是电磁理论在地球介质条件下的应用,形成了特定的地球电磁学学科。地震是发生在地球内部的一种自然现象,是地球内部介质相互作用的结果,地震的孕育和发生将伴随有介质电磁性质的改变或电磁场的变化,因此地球地磁学方法应用于地震研究的基本任务就是利用地球地磁学的理论和技术,探索与孕震过程有关的地球介质的电磁性质及电磁场本身的变化,为地震预报以及孕震过程提供理论依据和有效方法。

我国地震电、磁前兆的观测是分开的,其观测方法有以下四种分类划分法:

(1)按使用场源的种类划分,可分为被动场源(天然场源)和主动场源(人工场源);

(2)按场源频率划分,可分直流、交流电磁场法,使用的频率有:

DC—超低频(ULF),频率在10Hz以下;极低频(FLF)、甚低频(VLF),频率从0.01到30KHz。

(3)按观测的物理量划分,可分为岩层(岩石)的物理性质和场强的观测。

(4)按测量方式划分,可分为固定台站(定点)测量,定点定期重复测量和不定时不定点测量(面积和剖面线测量)等等。

地下流体的异常动态变化与地震的孕育和发生过程之间有着密切的成因上的联系,这是利用地下流体方法预报地震的基本依据。地下流体是构成地壳介质的一种特殊的、最活跃的组成成分,能够灵活地反映地震孕育过程中岩石的应力应变;同时,地下流体的动态变化,对岩石的应力应变过程还要产生促进作用。

地下流体动态变化能够灵活地反映岩石的应力应变,已为大量资料所证实。地下水位对固体潮引起的地壳体应变反映的灵敏度可高达10-10。流体中含有的丰富多样的化学元素组分,尤其是其中的气体组分,也能灵敏地反映岩石的变形破坏,且显示出多种测项的异常变化,从而可提供丰富多样的地震前兆信息。

地下流体的动态观测,是流体方法预报地震的基础。观测内容包括:水位、流量、水温、水化、气体及断层气等。目前,我国已建成多层次、多项目、立体式的流体观测体系,积累了十分丰富的流体前兆资料,为流体前兆理论研究和实际地震预报提供了可靠的依据。

宏观异常现象一般是指人们在日常生活中仅凭感官就能观察或感觉到的与正常现象不同的自然现象。地震宏观异常现象则指在地震发生前后出现,且与地震的孕育、发生和发展有密切关系的宏观异常现象。常见的宏观异常现象有:

(1)地下流体异常

A、地下水异常:水位升降异常、物理性质异常、化学组分异常;B、地下气体异常:气体溢出异常、翻花冒泡异常、燃气火球异常;C:地下油、七异常:石油产量异常、深井喷油异常。

(2)生物异常

A、动物异常:a.动物分类:穴居动物、水生动物、禽类、畜类、昆虫、其他野生动物;b.异常形式分类:行为异常、习性异常、迁徙异常。

B、植物异常:重花重果、再生或死亡。

(3)地球物理场异常

A、地光异常:大气发光、器物发光、燃气火球发光、地裂缝闪光;

B、电磁现象异常:电磁干扰、静电干扰;

C、地声;

D、有感地震‘

(4)地质现象异常

地裂缝、滑坡、坍塌。

(5)气象异常

旱涝异常、增湿异常、风异常。

地震宏观异常的出现是重要的临震指标。宏观异常大多出现在震前3-5天、几小时乃至10多分钟。只有个别出现在震前10多天甚至一个月以上。因此,宏观异常的出现是重要的临震异常显示。所以,在完成对地震形势趋势估计的背景下,及时发现、收集、分析宏观异常现象,是实现地震短临预报的关键措施。

3. 为什么会地震,地震的形成原理是什么

为什么会地震,地震的形成原理是什么

为什么会地震,地震的形成原理是什么

4. 地震为什么不能做到准确预测?

为什么说郭德胜彻底破解了地震成因?
有史以来的地学基础空白,【湖泊与盆地存在怎样的关系】,获得重大突破:地理学的认知和深入探研,盆地形成的整个过程是这样的:(看好了)负地形-湖泊(堰塞湖、人工湖)--沼泽地(湿地)--湖盆内陆地--盆地(因在湖盆内)。这就是说,湖泊沉积可以演变成盆地,湖泊、水域是所有盆地形成的基础,这一重大发现,彻底打破地学多年来一筹莫展的困局。
       天然地震,火山爆发地震,岩爆地震,瓦斯爆炸地震,这四者存在相同点,那就是,都是地球内部能够释放能量的物质发生了巨大能量的释放,而事实已经证明,地球内部委实的存在可以燃烧,可以爆炸的很多能量物质,并且这些能量物质是集中的,诸如瓦斯,天然气,石油,核弹的铀矿等等物质,只要存在一定的条件,就会发生能量的释放,造成地壳的震动,火山内没有这样的特殊物质,就一定不会爆炸,煤矿内没有瓦斯,也不会爆炸,纯粹的岩石也不会爆炸,这就是说,地球内部如果没有这些特殊的、可以发生燃烧爆炸、释放能量物质的存在,那么,必然不存在天然的地震,,,世界的所谓地震专家,其实就是瞎子摸象,不顾事实的编造各种谎言。
知网收录。
天然地震的动力,源于地球自身的核能  
郭德胜   佳木斯大学数学系 伊春市汤旺河党校 3051145739@qq.com
根据方法论,研究地壳的运动和形变,必须从物质的物理角度和化学角度进行全面的分析总结。物体自身发生形变,产生动力的主要途径是物理变化、化学变化及和核裂变,物体的动能与势能导致物体形变或移动,物质发生化学变化,形成化学能,导致物体形变或移动。而动能、势能、化学能、核能是物质自身形成动力的绝对因素。根据多年的细致的研究发现,地球内部即存在物理变化,又存在化学变化,在地球内部的物质化学变化中,各种物质之间相互转化,形成新的无机物、有机物,单质及核能,而这些物质都具有能量释放的特性,形成动力。对照地下能量物质与地震产生的位置,可以得出,地震发生的位置与核物质存在的位置有着非常密切的关系,再结合大量事实及文献,根据地震与能量物质的一系列复杂关系,循序渐进的逻辑分析、推导,推论出这样一个事实,天然地震的动力,来源于地球内的核能。
关键词:铀;铀矿;钚;锎;氡;裂变;聚变;衰变;半衰期;中子;地震;天然核反应堆.
前言:
受人类活动的影响,全球气候发生了快速的变化,各种自然灾害频繁发生,气候恶化加剧,对人类的生存造成极大的威胁与不适应,如何解决这一问题,已经成为全球地学科学家与学者当务之急。
自古以来,科学研究者对地震研究一直纠结于地震的“动力”问题,运用“板块理论”进行了无数次的研究,最终没有得出科学的结论,为什么会出现这样的情况呢?方法论给出了解释,研究地质形变,必须要针对物理变化、化学变化所产生的动力入手,对地震等自然灾害形成的动力进行分析、判别,只有找到地质灾害的动力根源,一切地质灾害问题就将迎刃而解。
通过大量的历史资料与文献,结合自己多年的认识和总结,按照方法论、以及正确的逻辑思维分析、判断,在长时间的细致研究与总结中,对地质灾害的动力根源有了全面的了解和更深刻的认识,运用正确的思维逻辑,结合文献对地震等地质灾害问题加以全面的剖析和严谨的论述。
一,地壳发生形变分析
物体发生形变,不外乎物理变化、化学变化所形成的动能、势能、化学能以及核能所形成的动力,地壳发生形变,是地球外部因素与内部的动能、势能、化学能、核能导致的结果,在地球外部,存在风能、光能、水能,山体势能,在地球内部,存在着煤、石油、天然气,核物质等能量物质,而这些物质都隐含巨大的可释放能量,在一定条件和长时间的转化过程里,就会发生能量的释放。火山爆发、地震现象,这是一种能量释放,造成地壳出现抖动,由于地下本身就存在了各种可燃的能量物质以及核物质,那么,火山爆发、地震的“动力”一定来自地球内部。由此,我们要对地球内部的地质结构以及地球内部各种能量物质进行研究分析,找到使地壳发生形变的根源。
二,地震、地下能量物质存在的位置分析
根据“盆地、冲积平原,对成煤、成矿起了决定作用”这篇文章,得出这样的结论是,盆地、冲击平原地带会形成煤和天然气,而成煤地带,又是地震发生过的地带。比如山西,历史发生了无数次大地震,而山西是又是产煤的大省,地震、煤矿、天然气有着密不可分的关系。再根据,铀矿与天然气伴生等大量的史料文献,让我们清楚了这样一个事实,铀矿与天然气共存,也存在于盆地及冲击平原内及其盆山边缘,那么,在盆地、冲击平原及其周围就存在这样一个事实。
煤、天然气、石油、铀矿、地震在一个以盆地、冲击平原这样地貌的的特殊位置上。在盆地、冲击平原这个特殊位置上,让我们发现了无数的煤矿,天然气矿,油矿、铀矿,而这些物质都是地球上最重要的可以释放能量的物质,在这样特殊的地理位置,又时时的发生着地震,地震与这些能量物质,就存在了千丝万缕的复杂关系。[1.2.3.4.5]
三, 地下所有能量物质能否在地下释放能量
对于埋藏地下的能量物质,我门所知道的主要是,煤、石油、天然气、瓦斯、核物质。这些储存地下的能量物质能否进行能量的释放呢?
按照煤、石油、天然气瓦斯的燃烧、爆炸性质,他们燃烧、爆炸需要氧气条件及明火,氧气的多少决定了能量释放的多少,矿井常常因瓦斯爆炸引发地震,这是井下瓦斯浓度与充足的氧气存在了爆炸的条件。在地下,如果煤、天然气、石油这些矿出现完全的能量释放,那么,就必须存在有足够的氧气。但事实证明,地下的氧气不足以释放这些能量的物质,但现在,大量的事实,以及无数的相关文献证明,地下存在与天然气伴生的铀矿[2.3.4.5],铀是核物质,铀矿是运用到各个领域的基础燃料,而且释放的能量巨大。而对于核物质来讲,不需要任何条件,只需要一个“中子”撞击,就能将核物质的能量释放出来。 [9]
四,分析地地球内部所存在核物质的特性
现在所发现的地下核物质是铀矿,铀的原子序数为92的元素,在自然界中存在三种同位素铀234、铀235和铀238。铀238的半衰期约为45亿年,铀235的半衰期约为7亿年,而铀234的半衰期约为25万年,铀矿石里含有铀234、铀235和铀238。[6]
参考关于“铀_钚和铀核裂变产物的若干问题_兼谈2011年福岛核事故泄露的放射性物质”,这篇文章详细的介绍了核物质的衰变、裂变以及产生的高能碎片继续衰变的过程,在铀的三种同位素U234,U235,U238中,铀U235有巨大的能量,1克U235裂变释放的能量相当于2.5吨优质煤所释放的能量,当铀U235在中子、热中子的轰击下,会发生裂变,裂变的途径有60多种,裂变所形成的高能碎片有20多种,主要的高能碎片有锶89(半衰期50天),锶90(半衰期29年),氪(半衰期10.8年),氙半衰期(9个小时),铀233,钡141,等碎片,这些高能碎片,在一定时间内,还会继续发生衰变,裂变,继续释放能量。[6]
铀矿中存在钚的痕量,钚的同位素有13种,自然界里有钚244,钚239 ,储量极少,半衰期年限比较长,人造的钚的同位素PU238,PU240,PU234,PU232,PU235,PU236,PU237,PU246等,PU244,半衰期约8千万年,PU239半衰期约2.41万年,PU238半衰期约88年,PU240半衰期约6500年,在研究过程中发现,地球内部还存有着极少量的锎,主要出现在含铀量很高的铀矿中。[6.27.28]
锎的同位素已知的锎同位素共有20个,都是 放射性同位素。其中最稳定的有锎-251( 半衰期为898年)、锎-249(351年)、锎-250(13.08年)及锎-252(2.645年)。其余的同位素半衰期都在一年以下,大部分甚至少于20分钟。锎同位素的 质量数从237到256不等。[34.35]
锎-252是个强中子射源,因此其放射性极高,非常危险。锎-252有96.9%的概率进行α衰变(损失两颗质子和两颗中子),并形成锔-248,剩余的3.1%概率进行自发裂变。一微克(最)的锎-252每秒释放230万颗中子,平均每次自发裂变释放3.7颗中子。其他大部分的锎同位素都以α衰变形成锔的同位素(原子序为96)。可用作高通量的中子源。[9.29] 能够利用的锎的数量非常少,使其应用受到了限制,可是,它作为裂解碎片源,被用于核研究。[7.9.24.26]
如果含铀量高的铀矿一旦出现锎,锎是强中子源,衰变会释放中子,对于含铀量高的铀矿,就会导致裂变,这如同成熟女人的卵细胞,当遇到精子,就会产生卵细胞分裂。
铀即能自发裂变,又可以人工裂变,在裂变过程中产生巨大能量,同时会发光、发热。铀裂变在核电厂最常见,加热后铀原子放出2到4个中子,中子再去撞击其它原子,从而形成链式反应而自发裂变,产生爆炸。[12]
五,地震发生的前后,氡气出现明显量的变化
氡是一种放射性惰性气体,铀是氡的母体,因此有铀存在的地方就有氡。根据这一说法,如果地表发生了氡气变化,那么地下就可能存在铀及其他核物质,现在常常运用氡出现的变化探测铀矿。另一方面,很多事实表明,在地震后,氡气有了明显变化,在地震后,对龙门山断裂地带检测,氡出现明显的不同,有铀矿的地方会出现氡气,氡气与铀有着直接的关系。[13.14.16.25]
六,对核聚变的思考与分析
核聚变的过程也是一种能量释放的过程。核聚变是小质量的两个原子合成一个比较大的原子 ,核裂变就是一个大质量的原子分裂成两个比较小的原子, 在同等条件下,核聚变所释放的能量远远大于核裂变。在史料和文献中还未有地球内部发生自然核聚变的解释和说明,只是有文献说明,地球内部发现3H的证据,根据现有的资料和文献,对于地球内部是否存在核聚变还没有科学的证实。
从地球内部的核裂变角度去分析,铀矿发生裂变,会产生大量的热能,核电站就是通过核裂变产生热能,运用蒸汽机原理进行发电的,由于铀矿与天然气共存,铀矿裂变产生的热能就会作用于天然气,甲烷加热1000度以上,就出现甲烷裂解,形成炭黑和氢气,方程式: CH4=高温=C+2H2 ,一旦铀矿出现裂变,热能就会作用于天然气,地壳内部就出现大量的氢气,氢气与其他气体会形成爆炸么?氢气在高温下,是否还会发生其他一系列的化学变化,形成氘、氚,造成能量释放?根据氢弹聚变的原理,地震能否在核裂变的基础上完成核聚变,从而形成了巨大能量释放,导致了地震。[40]
核聚变的条件比较苛刻,需要超高的温度,火山爆发会有较高的温度,地球内部核裂变会出现较高的温度,它们所产生的温度能否满足核聚变的条件,需要更进一步的研究,种种迹象表明,地球内部存在了聚变的物质基础,在核裂变中能否还存在核聚变,还有待于进一步的科学证实。[37.39]
七,地震的消减方法
另据报道,澳大利亚近些年很少地震,通过了解,澳大利亚是铀矿产量高的国家,而且很早就对铀矿进行了开采,到现在有80多年的历史,很多铀矿都被找到和开采,铀矿被开采后,奥克洛天然核反应堆现象也就不存在了。澳大利亚近几十年很少地震,与大量开采铀矿是否有关系?就有必要的思考了。[33]
地震属于能量的释放,而对于地下的的能量物质来讲,铀矿的能量巨大,而且,铀矿发生能量释放的方式非常简单,释放的条件是,铀矿的含量达到一定程度,存在中子源,就会出现铀裂变,导致能量释放,出现地壳的震动。
通过上述的分析,消除地震的最有效手段,就是快速找到铀矿并开采,把这个可以释放能量的核物质从地球内移除,除去地震的隐患,这是非常可行的办法。另一方面,对所存在的铀矿地区,进行铀矿含量鉴定,因为铀矿石达到一定含量,才会形成裂变条件。[8.15.17]
八,海啸的形成
海啸也同地震一样,是海洋内出现巨大能量的释放,但根据已有的资料和文献,还无法断定海啸是哪种能量物质发生了释放,科学界对可燃冰这个能量物质特性,还没有较详细的论证,海洋底部是否也存在核物质也没有相关文献和实证,因而,海啸的发生,是什么哪一种能量物质还难以定论。
结论
通过上述的逻辑分析和推论,如果所采用的文献和数据是科学的,那么,地震将不再是奥秘。自然发生的地震、余震都是铀矿的含量到了一定程度,在含量高的铀矿中,锎及锎的同位素会发生衰变,射出中子而导致铀矿的裂变,释放能量产生巨大的动力,引起地震震动和无数次持续裂变而产生的余震,同时,根据盆地、冲击平原对成煤成矿、地质灾害起了决定作用,及天然气与铀矿同存,这两篇文章,就可以发现以往很难发现的各种矿物质,同时,对地震的减消提供了合理的指导方向,为减免大地震的发生,为人类不再为地震所困找到了病因,这是造福人类,重新认识地球的一次史无前例的突破。
参考文献
1. 盆地、冲积平原对成煤、成矿、地质灾害起了决定作用 郭德胜  -   《科技视界》, 2016 (26) :304-305
2. 天然气、煤、铀共存关系初探——以鄂尔多斯盆地东胜地区为例  柳益群  韩作振  冯乔  邢秀娟  樊爱萍  杨仁超  全国沉积学大会, 2005
3. 多种能源矿产同盆共存富集成矿(藏)体系与协同勘探——以鄂尔多斯盆地为例 王毅, 杨伟利, 邓军, 吴柏林, 李子颖,地质学报》, 2014 , 88 (5) :815-824
4. 鄂尔多斯盆地多种能源矿产共存富集组合形式研究 李江涛《山东科技大学》 , 2005
5. 柴达木盆地北缘油—气—煤—铀共存及其地质意义 王丹《西北大学》 , 2015
6. 关于铀_钚和铀核裂变产物的若干问题_兼谈2011年福岛核事故泄露的放射性物质 曾铁《职大学报》, 2013 (4) :75-80
7. 248 Cm和252Cf自发裂变瞬发中子谱测量 包尚联, 刘文龙, 温琛林, 樊铁栓, 巴登柯夫,《高能物理与核物理》, 2001 , 25 (4) :304-308
8. 近似模拟地下核爆炸冲击震动效应方法的探讨 薛宇龙 , 唐德高 , 么梅利  -  《爆破》  -  2013
9. 浅谈核电站用锎-252中子源 温国义  -  《科技与创新》  -  2017
10. 一种可实现临界及次临界运行实验的液态金属冷却反应堆实验系统 柏云清, 吴宜灿, 宋勇来
11.  某些单酸有机磷酸酯萃取Cf和Cm  居崇华, 汪瑞珍, 樊芝草《核化学与放射化学》 1982 , 4 (3) :186-186
12.不同级钚材料的衰变放热功率计算分析 左应红, 朱金辉《核技术》 2016 (1) :39-44
13. 印度用于找铀的氡测量方法 A.S.布哈特那格《铀矿地质》, 1973 (6) :45-47
14. 用含氡量变化来预报地震吴迪《世界科学》, 1984 (7) :64-65
15. 90年代以来核爆炸地震学研究进展 吴忠良, 牟其铎《世界地震译丛》, 1994 (4) :1-7
16.汶川8.0级地震氡观测值震后效应特征初步分析  刘耀炜, 任宏微《地震》, 2009 , 29 (1) :121-131
17. 地下核爆炸消灭大地震 田武《大科技》, 2000 (6) :31-31
18. 3MeV中子诱发裂变测定铀同位素丰度  乔亚华,吴继宗,杨毅,刘世龙《原子能科学技术》, 2012 , 46 (7) :878-880
19. 天然反应堆与核燃料 李盈安《华东地质学院学报》1940年10期
20. 奥克洛现象——天然核反应堆  巴侍《世界核地质科学》, 1982 (5)

5. 为什么地震很难被预测?

人类史上已知的大地震级别:第一位的智利大地震,震级达到9.5级,第二位是阿拉斯基大地震,震级达到9.2级,第三位是东京大地震,震级9.1级。我国也发生过破坏力巨大的强震,记忆最近的一次就是汶川大地震,虽然已经过去12年了,但留下的的伤痛却依旧刻骨铭心,现在的科技可以预测气象,海洋洋流,台风等等自然现象,为什么对地震就束手无策呢?

地震带来的灾难是巨大的,也正因为如此,我们国家也从来没有停下对地震探测的研究,东汉时期的张衡就发明出了第一个用于探测地震的工具--地震仪,这也是世界上第一台能准确确定地震方位的仪器,比欧洲还要早上1700多年,可以说对地震研究的奠基人了。

而如今,千百年过去了,我们的科技水平不断提高,可是对地震的预测和防控却依然是一片茫然,仅有的几次就准确预测也只是比地震发生快了几分钟而已,并没有起到实质性的作用。自古就有上天容易入地难的说法,我们预测天气有气象卫星,可以每秒不间断的拍摄传递气象云图没在经过整理的分析就能精确预测自然气象,但是对地底下的观测就困难重重了,地下结构复杂,以目前的科技水平能观测深度也就是几公里的位置,这是个什么概念呢?拿采矿来举例,矿井一般最深可达几千米,其中人类最深挖掘到了一万米,耗费的时间和人工成本是巨大了,但也仅仅是地球半径的几千分之一,可以说就是拿铲子在地球表面划了一道印子而已。

所以说,预测地震的难度是非常大的,可是我们也不甘心就这样让他搞破坏,我们可以研究地质结构,标出易发地带的位置,和地震峰值运动区域,虽然不能准确预测,但是可以防患于未然。

为什么地震很难被预测?

6. 最难预测的灾害是什么A台风 B暴雨 C雪灾 D地震

地震
地震是能够造成生命财产损失最最惨重的自然灾害,因为地震的灾害甚至不限在震中及其周围区域,地震所引发的海啸甚至能威胁到远离震中数千上万公里之外的地方。现在预测地震的方法主要有三种手段,一种是地球物理学的方法,第二种是电磁场力学的方法,还有一种就是统计学的方法。这三种方法都还处于很原始的位置。
经常有人混淆了“地震预报”和“地震预警”的概念,地震预报是地震发生之前向人们预告地震将要发生,这样人们可以采取各种方法避开危险,而地震预警则是在地震发生之后抢在地震波到达之前告诉人们已经发生了地震,这样人们能有大概数秒的机会以采取各种手段逃生。
地震预报的这些方法中数地球物理学的方法最直观,最能说明问题。从理论上来说应该能够做到像天气预报那样地准确预测地震。但现在支撑着天气预报的是气象卫星、气象雷达、大量的数据积累和超级计算机,人们在预报天气时能在几千公里范围内以数米的尺度来进行观测,以及对各种天气现象机理的深度理解,所以除去近年来因为环境被破坏而导致的局部地区暴雨之外,人们已经能以很高的精度和满足度来预报天气了。
和对于地球之外大气层的认识以及监视手段相比,人们对于地球内部的认识以及监视手段可以说可怜到了几乎没有。使用现有的地球物理学知识,人们只能近似地推测出某个局部地区会不会发生大地震的概率,但无法准确地预报何时发生何种级别的地震。
使用电磁场力学可以间接地推知地球内部所发生的物理变化从而预测地震。当地球内部发生物理变化时肯定会影响到地球表面的电磁场发生变化,一些地震前夕动物异常行动或者环境异常变化的报告也可以用电磁场理论来解释。但问题是人们还不止到这两者之间缺失的函数的对应关系,无法建立查询索引。
有很多在地震之前观察到动物出现异常行动或者环境发生异常变化的报告。但是不少这些所谓“异常现象”的报告在更大程度上实际上受到了某种心理暗示的结果。比如一般在有人遇到了不虑事故的时候,其他人总能找到一些事故之前就似乎在暗示此人命运的所谓“反常行为”,比如一个懒于家务的人在今天出门之前打扫了房屋卫生什么的。人们总是倾向于相信任何事情都有前兆而忽略接受这位“懒人”其实偶尔也会打扫卫生什么的事实。其实不伴随异常现象的地震也很多,而且也经常能观察到不伴随地震的异常现象。但是这些异常现象很快就会被忘记,只有那些伴随了重大灾害的异常现象才会被人记忆,所以不能依靠这些“异常现象”来预测地震。
详细参考:网页链接

7. 地震是什么原因造成的?

地震到底是什么原因引起的呢?一起来看

地震是什么原因造成的?

8. 地震的科学解释是什么?

随着科学和技术的进步,大量的实证数据使得地震研究逐渐成为一门系统、完善的科学,现代人对地震做出了更接近真相的解释。现代科学认为地震是由地壳运动引起的,由于地球在不断的运动和变化中,逐渐积累了巨大的能量,在地壳某些脆弱地带,造成岩层突然发生破裂或者引发原有断层的错动,这就是地震。
板块构造学说是1968年法国地质学家勒皮雄与麦肯齐、摩根等人提出的一种新的大陆漂移说,该学说将全球地壳划分为六大板块:太平洋板块、亚欧板块、非洲板块、美洲板块、印度洋板块(包括澳洲)和南极板块。一般说来,在板块内部,地壳相对比较稳定,而板块与板块交界处,则是地壳比较活动的地带,这里火山、地震活动以及断裂、挤压褶皱、岩浆上升、地壳俯冲等频繁发生。该学说将占世界地震总量90%以上的构造地震成因归结为地壳各板块之间相互碰撞挤压的结果。根据板块结构理论的分析,可以解释我国西部地区频繁发生强烈地震的问题:印度次大陆板块不断与欧亚大陆板块碰撞并且不断挤压,形成了仅次于太平洋地震带的、世界上第二大地震带——地中海—喜马拉雅地震带。该地震带东西分布,横贯欧亚大陆,正好经过我国喜马拉雅山脉地区,所以我国西部地区就成为世界上大陆地震最活跃、最强烈、最集中的地区之一。
除了地质因素外,人类自身的活动有时候也能引发地震,尤其是现在,人类所能实施的工程越来越浩大,对地球的影响也越来越大,所以在这方面一定要引起警惕。
根据具体诱因,可以把地震分为构造地震、火山地震、陷落地震、诱发地震和人工地震等,下面将一一详述。
构造地震
构造地震往往是由于地壳发生断层引起的,所以又称“断层地震”。“断层”是指地壳岩层因受力达到一定强度而发生破裂,并沿破裂面有明显相对移动的构造,大小不一、规模不等,但都破坏了岩层的连续性和完整性。地壳(或岩石圈)在构造运动中发生形变,当形变超出了岩石的承受能力,岩石就发生断裂,在构造运动中长期积累的能量迅速释放,造成岩石振动,从而形成地震。构造地震是地震的主要类型,90%以上的地震、几乎所有的破坏性地震都属于构造地震。
在一定时间内,发生在同一震源区的一系列大小不同的地震,且其发震机制具有某种内在联系或有共同的发震构造的一组地震总称地震序列。根据地震序列的表现形式,可以把构造地震分为以下几种主要类型:
(1)孤立型地震
前震和余震都很稀少,而且余震的震级与主震震级相差也很大,大小地震不成比例。地震能量基本上是通过主震一次释放出来的,前、余震能量的总和常常不到主震的1/1 000。2009年3月20日2时38分,吉林省四平市伊通满族自治县、公主岭市交界发生4.3级地震,震中距长春市约70千米、距沈阳市约240千米。四平、长春地区有震感,但过程仅仅几秒钟,大多数人还没感觉到就过去了。吉林省地震局当日下午对外通报称,该次地震属于孤立型地震。
(2)主震——余震型地震
一个地震序列中,最大的地震特别突出,所释放的能量占全序列能量的90%以上,最大地震与次大地震的震级之差大于等于0.6,而小于等于2.4。这个最大的地震叫主震;其他较小的地震中,发生在主震前的叫前震,发生在主震后的叫余震。这次的汶川地震就属于比较典型的主震——余震型地震。2008年5月12日14时28分04秒,发生在四川汶川县(北纬31.0度,东经103.4度)的主震为8.0级地震,随后一段时间分别发生了几次6.0~6.4级余震,其他余震级别都比较小,最大地震与次大地震的震级之差在0.6与2.4之间。
(3)双震型地震
一个地震活动序列中,90%以上的能量主要由发生时间接近、地点接近、大小接近的两次地震释放,最大地震与次大地震的震级之差小于等于0.5。1980年4月18日青海省天峻县发生5.2级地震,4月24日原震区又发生5.0级地震。在这个地震序列中,只有这两次地震的震级差小于0.5,其他的余震都比较小,属双震型。
(4)震群型地震
一个地震序列的主要能量是通过多次震级相近的地震释放的,震级之差小于等于0.5的最大地震数达到3或更多,没有明显的主震,最大地震在全序列中所占能量比例一般均小于80%。
震群型地震的特点是地震频度高,能量的释放有明显的起伏,衰减速度慢,活动的持续时间长。震群的震源往往较浅(小于10千米),随时间震群的分布范围也逐渐扩大。1966年的邢台地震就属于这一类型。1966年3月8日5时29分,在河北省邢台地区隆尧县东发生了6.8级强烈地震,随后从3月8日至29日在21天的时间里,邢台地区连续发生了5次6级以上地震。
火山地震
由于火山活动时岩浆喷发冲击或热力作用而引起的地震,称为火山地震。这类地震可产生在火山喷发的前夕,亦可在火山喷发的同时。其特点是震源常限于火山活动地带,一般深度不超过10千米的浅源地震,震级较大,多属于没有主震的地震群型,影响范围小。有些地震发生在火山附近,震源深度为1~10千米,其发生与火山喷发活动没有直接的或明确的关系,但与地下岩浆或气体状态变化所产生的地应力分布的变化有关,这种地震称为A型火山地震。还有些地震集中发生在活火山口附近的狭小范围内,震源深度浅于1千米,影响范围很小,称为B型火山地震。有时地下岩浆冲至接近地面,但未喷出地表,也可以产生地震,称为潜火山地震。
地震和火山往往存在关联。火山爆发可能会激发地震,而发生在火山附近的地震也可能引起火山爆发。1999年记录的27起火山活动,有14起出现在土耳其大地震以后短短的两个多月内。著名的腾冲火山群位于滇西横断山系南段的高黎贡山西侧,火山及熔岩流以腾冲县城为中心成一南北向延伸的长条形,面积87×33平方公里,计有火山锥70余座,其中火口完整的22座,遭破坏的10座,其余为无火口火山。火山及熔岩活动自上新世始至全新世。本区以极丰富的地热资源著称于世,据1974年不完全统计,腾冲县79个泉群中,温度在90℃以上者有10处,地表天然热流量达25.498×104千焦耳/秒,一年相当于燃烧27万吨标准煤。在地热区高温中心热海热田,遍布汽泉、热泉、沸泉,水声鼎沸,水汽蒸腾,数里之外可见。该区地震频繁,并具岩浆冲击型地震的特点:小震、群震、浅震甚多。
陷落地震
由于地下水溶解了可溶性岩石,使岩石中出现空洞并逐渐扩大,或由于地下开采形成了巨大的空洞,造成岩石顶部和土层崩塌陷落,这种情况引起的地震叫陷落地震。地震能量主要来自重力作用。陷落地震主要发生在石灰岩或其他岩溶岩石地区,由于地下溶洞不断扩大,洞顶崩塌,引起震动。矿洞塌陷或大规模山崩、滑坡等亦可导致这类地震发生。这类地震为数很少,约占地震总数的3%,震级都很小,影响范围不大。
广西桂林是典型的喀斯特地貌,由于特殊的地质条件,这里发生的地震多为陷落地震,特点是小震级、窄范围、高烈度、局部破坏严重。1981年9月24日16时30分,桂林市平乐县发生了陷落地震,垂直下陷120米,水平移动800米,宽度60~100米。老虎冲两侧农田全部被砂泥乱石淹没,覆盖厚度10~30米。1997年11月11日11点54分,桂林市雁山区柘木镇柘木村发生里氏1.2级的陷落地震。此次地震造成地面塌陷的受灾总面积约10万平方米。据查是桂林陷落地震史上受灾最严重、地面塌陷面积最大,而陷坑最多又相对集中的一次震害。
诱发地震
在特定的地区因某种地壳外界因素诱发而引起的地震,称为诱发地震。这些外界因素可以是地下核爆炸、陨石坠落、油井灌水等,其中最常见的是水库地震。水库蓄水后改变了地面的应力状态,且库水渗透到已有的断层中,起到润滑和腐蚀作用,促使断层产生新的滑动。但是,并不是所有的水库蓄水后都会发生水库地震,只有当库区存在活动断裂、岩性刚硬等条件,才有诱发的可能性。科研工作者总结出水库诱发地震的7项标志:(1)坝高大于100米,库容大于10亿立方米;(2)库坝区有活动断裂;(3)库坝区为中新生代断陷盆地或其边缘,近代升降活动明显;(4)深部存在重力梯度异常;(5)岩体深部张裂隙发育,透水性强;(6)库坝区历史上曾有地震发生;(7)库坝区有温泉。
按工程地质条件来分类,水库诱发地震具有不同的成因类型,主要有岩溶塌陷型和断层破裂型。岩溶塌陷型水库诱发地震最常见,多为弱震或中强震。我国在岩溶地区的大型水库有8个,其中4个诱发了地震。断层破裂型水库诱发地震发生的概率虽然较低,但有可能诱发中强震或强震。我国新丰江水库和印度柯依纳水库的诱发地震都属于这种类型。
新丰江水库又称万绿湖,始建于1958年,是一个集灌溉、发电、防洪于一体的水利工程,1959年10月20日,水库开始蓄水,新丰江水库蓄水的同年11月便录得有地震活动;1960年5月,水库的水位蓄到81米时,发生了3至4次强度为3.1级左右的有感地震;1960年7月18日,水库水位升到90米时,发生强度为4.3级的中度地震;1962年3月19日,水库水位升到110.5米时,发生了震级6.1级的强震,震中位于大坝下游1.1千米处,震源的深度约为5千米,此次地震对大坝的局部地段造成损害。此后,地震的强度逐年迅速减弱。
印度科依纳(KOYNA)水库位于印度孟买城以南230公里的地方。印度科依纳水库不但大坝底下的地基十分理想,而且水库所在地区的地质结构完整。从地质板块学的观点来看,这座水库是建造在印度板块上,是印度—澳大利亚板块的一部分,于几百万年前就已经形成。人们认为这种地质结构是最稳定的,即所谓的无震区,而且在水库建造之前,也没有地震的记载。1963年科依纳水库竣工并当即蓄水启用。在这之后,附近地区就小震不断,在1964年和1965年之间,最高一周地震次数达40多次。水库在1965年蓄满水,之后地震次数增多,强度加大。到1967年,一周地震次数竟高达320次。在1967年9月13日发生了一次震级5.5级的地震,1967年12月11日在大坝附近发生了震级为6.5级的地震,震中烈度为8度。在印度科依纳水库诱发地震之前,人们认为水库诱发地震的强度不会超过6级。但是科依纳水库诱发地震之后,这个指标修正为6.5级。
人工地震
广义的人工地震是由人为活动引起的地震。如工业爆破、地下核爆炸造成的振动,还有打桩、爆破,乃至车辆通行,都可形成人工地震。狭义的人工地震可以理解成,为了研究地震而用人工爆炸的方法制造的地震,其震级很小,地点可以由人自由确定,规模大小可以控制。
“城市地震活断层探测与地震危险性评价”是一个全国性的勘察项目,是国家“十五”计划之一,全国重点城市都要进行这样的深部地震勘察项目,旨在了解活动断层的分布和危害性,并采取有针对性的防震减灾措施,可以大大减轻城市地震灾害。而人工地震就是勘查的主要手段,通过人工地震造成地震波,再通过对地震波的分析研究城市活断层并进行有关评估。有专家形象地称这是在“给地球做CT”。
2004年4月1日凌晨1点,“嘭!嘭!”万籁俱寂的上海南汇以东海滩突然发出两声闷响,方圆1千米的大地随之微微颤动,地下泥浆伴随着水柱冲天而起。瞬间,上海市地震局测震台网和强震台网监测仪器屏幕上出现地震波信号,5分钟后,结果显示:南汇地区“地震”2.1级。这就是由上海科技人员遥控、由1.68吨炸药制造的“人工地震”。“人工地震”的“震源”有2个,其中1个震源埋设的炸药达1.5吨,科技人员打出8个直径20厘米左右、深达40米的井孔,把炸药埋在地下。凌晨1点,GPS引爆后,爆炸能量穿透地下30公里,直抵地壳和地幔的分界处——莫霍面地壳同地幔间的分界面,是原南斯拉夫地震学家莫霍洛维奇于1909年发现,故以他的名字命名,称为莫霍洛维奇不连续面,简称莫霍面(或莫氏面)。。仅仅25秒,远在200千米外的浙江长兴地区的地震监测仪就收到了它的地震波。另一个相距10千米的“震源”则埋设了180公斤炸药,它能对地下30千米的地壳介质结构作出“精细扫描”。
知识点新丰江水库地震
新丰江水库大坝是世界上第一座经受六级地震考验的超百米高混凝土大坝。
新丰江水库蓄水20世纪60年代的地震活动:
1960年5月,水库的水位蓄到81米时,发生了三至四次强度为3.1级左右的有感地震。
1960年7月18日,水库水位升到90米时,发生强度为4.3级的中度地震。
1962年3月19日,水库水位升110.5米时,发生了震级6.1级(一说6.4级)的强震,震中位于大坝下游1.1千米处,震源的深度约为5千米,此次地震对大坝的局部地段造成损害,此后,地震的强度逐年迅速减弱。
最新文章
热门文章
推荐阅读