分形图的定义

2024-05-17 22:09

1. 分形图的定义

1973年,曼德布罗特(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德布罗特创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。曼德布罗特曾经为分形下过两个定义: Dim(A)>dim(A)的集合A,称为分形集。其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。(i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。(ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。(iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。(iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。(v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。

分形图的定义

2. 分形图的分形图

人们谈论分形,常常有两种含义。其一,它的实际背景是什么?其二,它的确切定义是什么?数学家研究分形,是力图以数学方法,模拟自然界存在的、及科学研究中出现的那些看似无规律的各种现象。在过去的几十年里,分形在物理学、材料科学、地质勘探、乃至股价的预测等方面都得到了广泛的应用或密切的注意,并且由于分形的引入,使得一些学科焕发了新的活力。数学上所说的分形,是抽象的。而人们认为是分形的那些自然界的具体对象,并不是数学家所说的分形,而是不同层次近似。1985年,曼德布罗特获得Barnard奖章。这项奖励专门颁发给那些在物理科学或者其它自然科学中有重大贡献、有重大影响的人物。在每五年一次的获奖者名单中,有爱因斯坦、费米这样一批享誉世界的科学家,可见曼德布罗特的分形研究在科学上的地位和影响。1995年应中国科学界的邀请,曼德布罗特访问中国并进行演讲。分形图形同常见的工程图迥然不同,分形图形一般都有自相似性,这就是说如果将分形图形的局部不断放大并进行观察,将发现精细的结构,如果再放大,就会再度出现更精细的结构,可谓层出不穷,永无止境。艺术家在分形画面的不同区域涂上不同的色彩,展现在我们面前的,将会是非常美丽的画面。几乎在曼德布罗特获得Barnard奖章的同时,以德国布来梅大学的数学家和计算机专家H.Peotgen与P.Richter等为代表,在当时最先进的计算机图形工作站上制作了大量的分形图案;J. Hubbard等人还完成了一部名为《混沌》的计算机动画。接着,印刷着分形的画册、挂历、明信片、甚至T恤衫纷纷出笼。80年代中期开始,首先在西方发达国家,接着在中国,分形逐渐成为脍炙人口的词汇,甚至连十几岁的儿童也迷上了计算机上的分形游戏。我国北京的北方工业大学计算机图形学小组于1992年完成了一部计算机动画电影《相似》,这部电影集中介绍了分形图形的相似性,这也是我国采用计算机数字技术完成的第一部电影,获得当年电影电视部颁发的科技进步奖。更多的人陶醉于分形,并非出自科学,而是倾心于分形之美。数学上的审美很难为一般人所理解:一大堆数字、公式、符号怎么体现出来呢?然而,计算机能让数学的某些内在的美直观呈现出来,给出其形式化的表达。分形作为一类例证,为数学理论与实践中所蕴涵的美,给出了一类精彩的注记。充分反映了数学科学中的简单、和谐、统一的内涵!一方面,从来不以科学内容本身为主题的艺术创作,也大量引用“动力系统”、“迭代逼近”、“混沌吸引子”等科学术语,进而极力采用计算机绘图手段,创造出无比神奇的作品。由这一点出发,可以说,艺术家已经开始漫步于科学领地!另一方面,一向以严肃表情面向读者的科学著作一反常态,书名也竟然浪漫起来:《The Beauty of Fractals》(分形之美)(1986),《Fractals Everywhere》(分形处处可见),《The Algorithmic Beauty of Plants》(植物算法中的美)(1990), ….大量精美的、显示分形的科学挂图,乔装打扮,在美术馆展厅登场,接受艺术鉴赏家的评头论足,科学家也从此跨入了神圣的艺术殿堂!分形之美,往往须经计算机的处理才能表现出来的。今天,人们可以在网络上,浏览与欣赏各种不同风格的分形作品,有的针对科学研究中要表达的一些特别的对象,有的则完全是艺术。网络天地会给你提供许多、美妙惊奇的分形图画,令你心犷神怡,也有时令你眼花缭乱。

3. 分形图的介绍

分形图数学家本华·曼德博(法语:Benoit B. Mandelbrot)经历了不平凡的潜心研究,于1975年出版了他的关于分形几何的专著《分形、机遇和维数》,标志着分形理论的诞生。数学家研究分形,是力图以数学方法,模拟自然界存在的、及科学研究中出现的那些看似无规律的各种现象。

分形图的介绍

4. 分形图的意义

上世纪80年代初开始的“分形热”经久不息。分形作为一种新的概念和方法,正在许多领域开展应用探索。美国物理学大师约翰·惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。 中国著名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。 分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义。

5. 分形的概况

 芒德布罗曾经为分形下过两个定义:(1)满足下式条件Dim(A)>dim(A)的集合A,称为分形集。其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数。(2)部分与整体以某种形式相似的形,称为分形。然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。分形一般有以下特质:在任意小的尺度上都能有精细的结构; 太不规则,以至难以用传统欧氏几何的语言描述; (至少是大略或任意地)自相似豪斯多夫维数会大於拓扑维数(但在空间填充曲线如希尔伯特曲线中为例外); 有著简单的递归定义。(i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。(ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。(iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。(iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。(v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。 上世纪80年代初开始的“分形热”经久不息。分形作为一种新的概念和方法,正在许多领域开展应用探索。美国物理学大师约翰·惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。中国著名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界是非线性的,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义。

分形的概况

6. 分形的种类

逃逸时间系统:复迭代的收敛限界。例如:Mandelbrot集合、Julia集合、Burning Ship分形迭代函数系统:这些形状一般可以用简单的几何“替换”来实现。例如:康托集合、Koch雪花、谢尔宾斯基三角形、Peano曲线等等。吸引子:点在迭代的作用下得到的结构。一般可以用微分方程确立。例如:Lorenz吸引子。

7. 分形图的完美结合

有一段时间 google 的图标变成下面这个样子,很多人不明白,这是什么意思,其实这是为了纪念法国数学家Gaston Julia,他发现了在数论中有名的julia序列,就是在这个google LOGO上面看到的数学公式。通过这个数学公式可以在解析几何上实现很多不规则边的图形。学名叫作分形。我们在网上搜索了一些资料,为大家做一下分形这个图形学上的概念普及。让我们来看下面的一个例子。下图是一棵厥类植物,仔细观察,你会发现,它的每个枝杈都在外形上和整体相同,仅仅在尺寸上小了一些。而枝杈的枝杈也和整体相同,只是变得更加小了。那么,枝杈的枝杈的枝杈呢?自不必赘言。如果你是个有心人,你一定会发现在自然界中,有许多景物和都在某种程度上存在这种自相似特性,即它们中的一个部分和它的整体或者其它部分都十分形似。其实,远远不止这些。从心脏的跳动、变幻莫测的天气到股票的起落等许多现象都具有分形特性。这正是研究分形的意义所在。例如,在道琼斯指数中,某一个阶段的曲线图总和另外一个更长的阶段的曲线图极为相似。上图中的风景图片又是说明分形的另一很好的例子。这张美丽的图片是利用分形技术生成的。在生成自然真实的景物中,分形具有独特的优势,因为分形可以很好地构建自然景物的模型。除了自相似性以外,分行具有的另一个普遍特征是具有无限的细致性。上面的动画所演示的是对Mandelbrot集的放大,只要选对位置进行放大,就会发现:无论放大多少倍,图象的复杂性依然丝毫不会减少。但是,注意观察上图,我们会发现:每次放大的图形却并不和原来的图形完全相似。这告诉我们:其实,分形并不要求具有完全的自相似特性。不管你信不信,上面的这张月球表面的照片也是用分形技术生成的。如果你把图片放大观看,也可以看到更加细致的东西。因为,分形能够保持自然物体无限细致的特性,所以,无论你怎么放大,最终,还是可以看见清晰的细节。Sierpinski三角形也是比较典型的分形图形,它们都具有严格的自相似特性(仔细看看,是不是这样?)。但是在前面说述的Mandelbrot集合却并不严格自相似。所以,用“具有自相似”特性来定义分形已经有许多局限了。

分形图的完美结合

8. 分图形。

好像是这样吧
最新文章
热门文章
推荐阅读