指数运算法则的介绍

2024-05-20 00:35

1. 指数运算法则的介绍

指数函数的一般形式为y=a^x(a>0且不=1) ,函数图形下凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。

指数运算法则的介绍

2. 指数运算法则

指数函数运算法则公式,指数运算理解道理

3. 指数运算法则的法则

  在函数y=a^x中可以看到:(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0一般也不考虑。(2) 指数函数的值域为大于0的实数集合。(3) 函数图形都是下凹的。(4) a大于1,则指数函数单调递增;a小于1大于0,则单调递减。(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。(7) 函数总是通过定点(0,1)(8) 指数函数无界。(9) 指数函数既不是奇函数也不是偶函数。(10)当两个指数函数中的a互为倒数时,此函数图像是偶函数。 例1:下列函数在R上是增函数还是减函数?说明理由. ⑴y=4^x 因为4>1,所以y=4^x在R上是增函数; ⑵y=(1/4)^x 因为00,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)loga(M/N)=logaM-logaN. (3)logaMn=nlogaM (n∈R).

指数运算法则的法则

4. 指数运算法则是怎样的

指数函数指数函数的一般形式为y=a^x(a>0且不=1) ,要想使得x能够取整个实数集合为定义域,则只有使得 如图所示为a的不同大小影响函数图形的情况。
在函数y=a^x中可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0一般也不考虑
(2) 指数函数的值域为大于0的实数集合
(3) 函数图形都是下凹的
(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交
(7)函数总是通过(0,1)这点
(8)显然指数函数无界
(9)指数函数既不是奇函数也不是偶函数
(10)当两个指数函数中的a互为倒数时,此函数图像是偶函数。 
例1:下列函数在R上是增函数还是减函数?说明理由
⑴y=4^x 因为4>1,所以y=4^x在R上是增函数
⑵y=(1/4)^x 因为0<1/4<1,所以y=(1/4)^x在R上是减函数
对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数.
由定义知: 
①负数和零没有对数
②a>0且a≠1,N>0
③loga1=0,logaa=1,alogaN=N,logaab=b
特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN
以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R).

望采纳  谢谢

5. 指数运算法则

指数函数的一般形式为y=a^x(a>0且不=1) ,函数图形下凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。
指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角。
当指数  时, 
当指数  ,且n为整数时, 
当指数  时, 
当指数  时,称为平方。
当指数  时,称为立方。
具体如图:

扩展资料:
在函数y=a^x中可以看到:
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则单调递减。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(7) 函数总是通过定点(0,1)
(8) 指数函数无界。
(9) 指数函数既不是奇函数也不是偶函数。
参考资料:百度百科---指数运算法则

指数运算法则

6. 指数运算法则

指数函数运算法则包括指数加减底不变,同底数幂相乘除;指数相乘底不变等。                    扩展资料                      指数函数的一般形式是y=a^x(a>0且不=1) ,运算法则是指数加减底不变,同底数幂相乘除;指数相乘底不变;积商乘方原指数,换底乘方再乘除;非零数的`零次幂,常值为1;负整数的指数幂,指数转正求倒数等。

7. 指数运算法则

 指数运算法则:1.同底数幂相乘,底数不变,指数相加;2.幂的乘方,底数不变,指数相乘;3.分式乘方,分子分母各自乘方,等。
     
   指数运算法则    乘法 
   1.同底数幂相乘,底数不变,指数相加。
   2.幂的乘方,底数不变,指数相乘。
   3.积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
   4.分式乘方,分子分母各自乘方。
    除法 
   1.同底数幂相除,底数不变,指数相减。
   2.规定:(1)任何不等于零的数的零次幂都等于1。
   (2)任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
   指数运算法则口诀   有理数的指数幂,运算法则要记住。
   指数加减底不变,同底数幂相乘除。
   指数相乘底不变,幂的乘方要清楚。
   积商乘方原指数,换底乘方再乘除。
   非零数的零次幂,常值为1不糊涂。
   负整数的指数幂,指数转正求倒数。
   看到分数指数幂,想到底数必非负。
   乘方指数是分子,根指数要当分母。

指数运算法则

8. 指数运算法则

有理数的指数幂,运算法则要记住。
指数加减底不变,同底数幂相乘除。
//a^(n+m)=(a^n)×(a^m)
如:6^(2+3)=(6^2)×(6^3)
指数相乘底不变,幂的乘方要清楚。
//a^(n×m)=(a^n)^m
如:6^(2×3)=(6^2)^3
积商乘方原指数,换底乘方再乘除。
//(a×b)^n=(a^n)×(b^n)
如:(6×7)^2=(6^2)×(7^2)
非零数的零次幂,常值为
1不糊涂。
//a^o=1
(a≠0)
如:6^0=1,7^0=1,....
负整数的指数幂,指数转正求倒数。
//a^(-n)=1/(a^n)
如:6^(-2)=1/(6^2)
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
//n√(a^m)=a^(m/n)
如:4√(9^2)=9^(2/4),
8的1/3次幂=2
注:
^
为数学符号(几的几次方),如
2的3次方=2^3=8
最新文章
热门文章
推荐阅读