分形几何的实际应用有哪些

2024-05-17 19:26

1. 分形几何的实际应用有哪些

分形在空间中的应用问题

分形几何的实际应用有哪些

2. 什么是分形几何?

我们在学校里学习的可以说都是经典几何学,以规则且光滑的几何图形,如球面、双曲面、马鞍面、花瓶表面等几何图形为研究对象。但自然界中大量存在的事物或数学模型却是极不规则、极不光滑的。如山峦、河流里的旋涡、海岸、云朵及土地龟裂的裂纹、玻璃窗上的冰花等。这些图形使传统的几何学和古典数学显得有些束手无策。
当你漫步在海滩时,你可曾想过海岸线有多长吗?冬天,当雪花落下来时,你可曾留心过每个雪花的轮廓曲线是什么样的吗?这些不规则,但又很常见的图形,虽不会引起常人的重视,但这些问题在当代数学家芒德勃罗的眼中却有着不同的意义。他根据长期观察分析、收集与总结,创立了分形几何,很快,就引起了许多学科的关注,这是由于分形几何不仅在理论上,而且在实际生活中都具有重要价值。
分形几何是一门边缘学科,有着极其广泛的应用。比如,近年在研究治疗癌症的过程中,人们认为癌具有自相似性。癌细胞发育停滞,而分裂速度异常快,不规则、不协调,一片混乱,在“癌区”存在着“癌变分形元”。研究人员设法促进癌的分化发育,以突破滞点。目前许多药物与疗法正是根据这一原理进行的。
在上世纪70年代中期以前,芒德勃罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,采英文之尾的fractal,本意是不规则的、破碎的、分离的。芒德勃罗是想用此词来描述传统几何学所不能描述的一大类复杂无章的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉、粗糙不堪的断面、变幻无常的浮云、九曲回肠的河流、纵横交错的血管、令人眼花缭乱的满天繁星等。它们的特点是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形几何体。
中国著名学者周海中教授认为:分形几何不仅展示了数学之美,也揭示了世界的本质,还改变了人们理解自然奥秘的方式;可以说分形几何是真正描述大自然的几何学,对它的研究也极大地拓展了人类的认知疆域。
分形几何学作为当今世界十分风靡和活跃的新理论、新学科,它的出现,使人们重新审视这个世界:世界并非线性的一成不变,分形无处不在。分形几何学不仅让人们感悟到科学与艺术的融合,数学与艺术审美的统一,而且还有其深刻的科学方法与意义。
无尽相似的艺术

3. 分形几何是什么?

分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,称为自相似性。
例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。

分形几何与传统几何相比有什么特点:
(1)从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
(2)在不同尺度上,图形的规则性又是相同的。上述的海 岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。
其中一些是用来描述一般随即现象的, 还有一些是用来描述混沌和非线性系统的。

分形几何是什么?

4. 分形几何学的应用领域

分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是 2,大大高于它的拓扑维数 1。在某些电化学反应中,电极附近沉积的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规则的枝杈,每个枝杈继续分为细杈……,至少有十几次分支的层次,可以用分形几何学去测量。有人研究了某些云彩边界的几何性质,发现存在从 1公里到1000公里的无标度区。小于 1公里的云朵,更受地形概貌影响,大于1000公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。

5. 分形几何是什么 什么是分形几何

1、分形几何学是一门以不规则几何形态为研究对象的几何学。相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。分形几何学的研究对象为非负实数维数,如0.63、1.58、2.72、log2/log3(参见康托尔集)。因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。
 
 2、一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。

分形几何是什么 什么是分形几何

6. 分形几何中的图形可以用什么软件来做?

如果你只是想看一些漂亮的曲线,图形之类的,用Microsoft Office Visio 就行了,里面有网格点snap(捕捉)和Group(群组)功能,画出分形图的基本元素不断地复制,群组,再复制,群组.....就可以拼出你想要的图形了。
要是想玩深点,推荐你用 免费的Apophysis ,最新版本2.09,可以做出色彩绚丽的分形图。sourceforge 上有下载:http://sourceforge.net/projects/apophysis/
另外一款是 Ultra fractal 也是很不错的,下面是它的官网下载和一个介绍:
http://www.ultrafractal.com/download/index.php
http://opus.arting365.com/multimedia/2005-10-13/1129136085d89214.html
要是想玩得更深,就用Matlab吧,可以编写数学程序来绘图。

7. 分形几何指的是什么?

分形几何学是一门以不规则几何形态为研究对象的几何学。相对于传统几何学的研究对象为整数维数,如,零维的点、一维的线、二维的面、三维的立体乃至四维的时空。分形几何学的研究对象为非负实数维数,如0.63、1.58、2.72、log2/log3。
因为它的研究对象普遍存在于自然界中,因此分形几何学又被称为“大自然的几何学”。 一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统。分形有几种类型,可以分别依据表现出的精确自相似性、半自相似性和统计自相似性来定义。
虽然分形是一个数学构造,它们同样可以在自然界中被找到,这使得它们被划入艺术作品的范畴。分形在医学、土力学、地震学和技术分析中都有应用。简单的说,分形就是研究无限复杂具备自相似结构的几何学。 是大自然复杂表面下的内在数学秩序。

分形几何由来
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小事物的几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
客观事物都有它自己的特征尺度,要用恰当的尺度去测量。用尺子来测量万里长城,嫌太短,而用来测量大肠杆菌,又嫌太长。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度,这就是无标度”的问题。

分形几何指的是什么?

8. 分形几何有什么应用?

分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是 2,大大高于它的拓扑维数 1.   在某些电化学反应中,电极附近沉积的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。   自然界中更大的尺度上也存在分形对象。一枝粗干可以分出不规则的枝杈,每个枝杈继续分为细杈……,至少有十几次分支的层次,可以用分形几何学去测量。   有人研究了某些云彩边界的几何性质,发现存在从 1公里到1000公里的无标度区。小于 1公里的云朵,更受地形概貌影响,大于1000公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。   近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。