粒子群算法的优缺点

2024-05-06 04:03

1. 粒子群算法的优缺点

优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。
缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。

扩展资料:
注意事项:
基础粒子群算法步骤较为简单。粒子群优化算法是由一组粒子在搜索空间中运动,受其自身的最佳过去位置pbest和整个群或近邻的最佳过去位置gbest的影响。
对于有些改进算法,在速度更新公式最后一项会加入一个随机项,来平衡收敛速度与避免早熟。并且根据位置更新公式的特点,粒子群算法更适合求解连续优化问题。
参考资料来源:百度百科-粒子群算法

粒子群算法的优缺点

2. 浅谈粒子群算法改进方法


3. 粒子群算法的优缺点

优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。
缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。

扩展资料:
注意事项:
基础粒子群算法步骤较为简单。粒子群优化算法是由一组粒子在搜索空间中运动,受其自身的最佳过去位置pbest和整个群或近邻的最佳过去位置gbest的影响。
对于有些改进算法,在速度更新公式最后一项会加入一个随机项,来平衡收敛速度与避免早熟。并且根据位置更新公式的特点,粒子群算法更适合求解连续优化问题。
参考资料来源:百度百科-粒子群算法

粒子群算法的优缺点

4. 怎么判断粒子群优化算法有没有局部收敛?

转载请注明:来自百度知道——小七的风
首先说,标准的粒子群算法是通过控制权重系数ω的线性下降来使得种群收敛的,从收敛图上看,如果在多次迭代后(比如100次迭代后)如果最优粒子的适应度值不再变化即认为此时算法已经达到收敛。
理论上,粒子群通过自身的更新机制使得每个粒子在每次的迭代中会向该粒子的历史最优位置以及全局粒子位置的中间(或周围)位置靠近,这样虽然保证了粒子搜索的高效性(假设最优点存在于全局最优点与历史最优点的中间位置)但势必带来了粒子搜索范围的减少,所以容易出现局部收敛,并且已有相关文献证明了这不是一个全局最优的算法。
还有一种简单的做法是证伪,即不去直接证明粒子群是一个全局最优,而是试图去找到一个点,这个点的适应度值比粒子群找到的全局最优点的适应度值更好,这样就间接说明了算法没有找到全局最优点(可以采用纯随机,直到找到比粒子群提供的全局最优点好为止)

5. 关于粒子群算法的问题

粒子群的版本甚多,常用的是加有惯性权重w的
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) 
一般选择惯性权重在迭代过程中线性下降,目的是在迭代的初期,以比较大的权重分配给粒子的原速度,而防止粒子过早的倾向于其本身的局部最优与全局最优,此时的全局搜索能力是可以的。但粒子群是基于牛顿力学的,随着w的减小,速度v的作用会在更新中弱化,对应的是,pbest和gbest的作用得到了加强,这也就意味着,粒子会更加趋向于pbest和gbest的方向移动。这个时候粒子就特别容易陷入局部最优了。


其实陷入局部最优不只是粒子群的问题,进化类的算法都存在这个问题,只不过有些算法随机性强一些,收敛速度慢一些,所以更加容易跳出局部最优(但不是绝对避免)

关于粒子群算法的问题

6. 粒子群算法的比较

 大多数演化计算技术都是用同样的过程 :1.种群随机初始化2. 对种群内的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关3. 种群根据适应值进行复制4. 如果终止条件满足的话,就停止,否则转步骤2从以上步骤,我们可以看到PSO和GA有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解 。 但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or pBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解

7. 最优化 粒子群法

运行结果。
function [xm,fv] = zhidaoPSO(fitness,N,c1,c2,w,M,D)
%[xm,fv] = zhidaoPSO(@fitness,40,2,2,0.8,1000,2)
%         
%         求解无约束优化问题
%         fitness         待优化目标函数
%         N         粒子数目,
%         cX         学习因子
%         W         惯性权重
%         M          最大迭代次数
%         D          自由变量的个数
%         xm          目标函数取最小值时的自由变量
%         fv          目标函数的最小值
%   Detailed explanation goes here
tic;
format long;
%------step1.初始化种群的个体------------
x = zeros(N,D);
v = zeros(N,D);
for i=1:N

    for j=1:D

        x(i,j)=100*rand - 50;  %随机初始化位置

        v(i,j)=100*rand - 50;  %随机初始化速度

    end

end

%------step2.先计算各个粒子的适应度,并初始化Pi和PgPg为全局最优-------------
p = zeros(N,1);
%y = zeros(N,D);
for i=1:N

    p(i)=fitness(x(i,:));

    %y(i,:)=x(i,:);

end
y = x;
pg = x(N,:);             %Pg为全局最优

for i=1:(N-1)

    if fitness(x(i,:))<fitness(pg)

        pg=x(i,:);

    end

end

%------step3.进入主要循环,按照公式依次迭代------------
%Pbest = zeros(M,1);
for t=1:M

    for i=1:N

        v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
        for k=1:D
            if v(i,k) > 10 %10=vmax
                v(i,k) = 10;
            end
        end
        x(i,:)=x(i,:)+v(i,:);
        for k=1:D
            if x(i,k) > 50 %50=xmax
                x(i,k) = 31;
            end
        end

        if fitness(x(i,:))<p(i)

            p(i)=fitness(x(i,:));

            y(i,:)=x(i,:);

        end

        if p(i)<fitness(pg)

            pg=y(i,:);

        end

    end

    %Pbest(t)=fitness(pg);
end
xm = pg';
fv = fitness(pg);
toc;

最优化 粒子群法

8. 优化算法笔记(五)粒子群算法(3)

(已合并本篇内容至粒子群算法(1))
  
 上一节中,我们看到小鸟们聚集到一个较小的范围内后,不会再继续集中。这是怎么回事呢?
   猜测:
   1.与最大速度限制有关,权重w只是方便动态修改maxV。
   2.与C1和C2有关,这两个权重限制了鸟儿的搜索行为。
   还是上一节的实验,  。现在我们将maxV的值有5修改为50,即maxV=50,其他参数不变。参数如下
                                          
 此时得到的最优位值的适应度函数值为0.25571,可以看出与maxV=5相比,结果差了很多而且小鸟们聚集的范围更大了。
     现在我们设置maxV=1,再次重复上面的实验,实验结果如下:
                                          
   这次最终的适应度函数值为,比之前的结果都要好0.00273。从图中我们可以看出,小鸟们在向一个点集中,但是他们飞行的速度比之前慢多了,如果问题更复杂,可能无法等到它们聚集到一个点,迭代就结束了。
     为什么maxV会影响鸟群的搜索结果呢?
     我们依然以maxV=50为例,不过这次为了看的更加清晰,我们的鸟群只有2只鸟,同时将帧数放慢5倍以便观察。
  
 
                                                                                                                                                                                                          
 
  
 思路一:限制鸟的最大飞行速率,由于惯性系数W的存在,使得控制最大速率和控制惯性系数的效果是等价的,取其一即可。
     方案1:使惯性系数随着迭代次数增加而降低,这里使用的是线性下降的方式,即在第1次迭代,惯性系数W=1,最后一次迭代时,惯性系数W=0,当然,也可以根据自己的意愿取其他值。
   实验参数如下:
                                          
   小鸟们的飞行过程如上图,可以看到效果很好,最后甚至都聚集到了一个点。再看看最终的适应度函数值8.61666413451519E-17,这已经是一个相当精确的值了,说明这是一个可行的方案,但是由于其最后种群过于集中,有陷入局部最优的风险。
     方案2:给每只鸟一个随机的惯性系数,那么鸟的飞行轨迹也将不再像之前会出现周期性。每只鸟的惯性系数W为(0,2)中的随机数(保持W的期望为1)。
   实验参数如下:
                                          
   可以看到小鸟们并没有像上一个实验一样聚集于一个点,而是仍在一个较大的范围内进行搜索。其最终的适应度函数为0.01176,比最初的0.25571稍有提升,但并不显著。什么原因造成了这种情况呢?我想可能是由于惯性系数成了期望为1的随机数,那么小鸟的飞行轨迹的期望可能仍然是绕着一个四边形循环,只不过这个四边形相比之前的平行四边形更加复杂,所以其结果也稍有提升,当然对于概率算法,得到这样的结果可能仅仅是因为运气不好
     我们看到惯性系数W值减小,小鸟们聚拢到一处的速度明显提升,那么,如果我们去掉惯性系数这个参数会怎么样呢。
     方案3:取出惯性系数,即取W=0,小鸟们只向着那两个最优位置飞行。
                                          
   可以看见鸟群们迅速聚集到了一个点,再看看得到的结果,最终的适应度函数值为2.9086886073362966E-30,明显优于之前的所有操作。
     那么问题来了,为什么粒子群算法需要一个惯性速度,它的作用是什么呢?其实很明显,当鸟群迅速集中到了一个点之后它们就丧失了全局的搜索能力,所有的鸟会迅速向着全局最优点飞去,如果当前的全局最优解是一个局部最优点,那么鸟群将会陷入局部最优。所以,惯性系数和惯性速度的作用是给鸟群提供跳出局部最优的可能性,获得这个跳出局部最优能力的代价是它们的收敛速度减慢,且局部的搜索能力较弱(与当前的惯性速度有关)。
     为了平衡局部搜索能力和跳出局部最优能力,我们可以人为的干预一下惯性系数W的大小,结合方案1和方案2,我们可以使每只鸟的惯性系数以一个随机周期,周期性下降,若小于0,则重置为初始值。
                                          
   这样结合了方案1和方案2的惯性系数,也能得到不错的效果,大家可以自己一试。
  
 思路二:改变小鸟们向群体最优飞行和向历史最优飞行的权重。
     方案4:让小鸟向全局最优飞行的系数C2线性递减。
                                          
   小鸟们的飞行过程与之前好像没什么变化,我甚至怀疑我做了假实验。看看最终结果,0.7267249621552874,这是到目前为止的最差结果。看来这不是一个好方案,让全局学习因子C2递减,势必会降低算法的收敛效率,而惯性系数还是那么大,小鸟们依然会围绕历史最优位置打转,毕竟这两个最优位置是有一定关联的。所以让C1线性递减的实验也不必做了,其效果应该与方案4相差不大。
     看来只要是惯性系数不变怎么修改C1和C2都不会有太过明显的效果。为什么实验都是参数递减,却没有参数递增的实验呢?
     1.惯性系数W必须递减,因为它会影响鸟群的搜索范围。
     2.如果C1和C2递增,那么小鸟的惯性速度V势必会跟着递增,这与W递增会产生相同的效果。
  
 上面我们通过一些实验及理论分析了粒子群算法的特点及其参数的作用。粒子群作为优化算法中模型最简单的算法,通过修改这几个简单的参数也能够改变算法的优化性能可以说是一个非常优秀的算法。
     上述实验中,我们仅分析了单个参数对算法的影响,实际使用时(创新、发明、写论文时)也会同时动态改变多个参数,甚至是参数之间产生关联。
     实验中,为了展现实验效果,maxV取值较大,一般取值为搜索空间范围的10%-20%,按上面(-100,100)的范围maxV应该取值为20-40,在此基础上,方案1、方案2效果应该会更好。
     粒子群算法是一种概率算法,所以并不能使用一次实验结果来判断算法的性能,我们需要进行多次实验,然后看看这些实验的效果最终来判断,结果必须使用多次实验的统计数据来说明,一般我们都会重复实验30-50次,为了发论文去做实验的小伙伴们不要偷懒哦。
     粒子群算法的学习目前告一段落,如果有什么新的发现,后面继续更新哦!
   以下指标纯属个人yy,仅供参考
  
  目录 
    上一篇 优化算法笔记(四)粒子群算法(2) 
    下一篇 优化算法笔记(六)遗传算法