曹原发现的石墨烯超导有什么意义?

2024-05-18 21:59

1. 曹原发现的石墨烯超导有什么意义?

曹原发现的石墨烯超导具有重要的科学研究意义。曹原及其研究团队通过将两片叠放的石墨烯交错至一个特殊的“魔角”,并将整体冷却到略高于绝对零度的温度,就能创造这一奇观。这种角度的旋转从根本上改变了双层石墨烯的性质:首先将其变为绝缘体,然后施加更强的电场,将其变为超导体。

石墨烯能出现超导行为并不新奇,研究人员此前曾通过将石墨烯与已知为超导体的材料相结合,或通过与其他元素进行化学拼接的方式,诱导出石墨烯的超导态。
而这次的新发现之所以如此夺人眼球,是因为它通过一个简单的操作就诱导出石墨烯的超导特性。俄亥俄州立大学物理学家Chunning Jeanie Lau对此表示:“也就是说,将两个非超导原子层以特殊方式堆叠,就能让它们变成超导体?我想这是所有人都没想到的。”

让参与的物理学家更为激动的是实现这种超导的方式。有迹象表明,双层石墨烯的这一神奇特性或来源于电子之间较强的相互作用,也称为“关联”(correlation)——这种行为被认为是复杂材料出现奇异物态的原因。一些复杂材料,比如那些能在相对高温(仍远低于0°C)下实现超导的材料已经困扰了物理学界30多年。


如果简单如石墨烯的超导性也是由相同机制引起的,那石墨烯也许可以成为理解高温超导现象的“罗塞塔石碑”(Rosetta stone)。对高温超导现象的理解反过来也能帮助研究人员创造出能在接近室温的条件下超导的材料,从而彻底革新诸多现代技术领域,包括交通和计算。

曹原发现的石墨烯超导有什么意义?

2. 曹原发现的石墨烯,是常温超导吗?

之前大家试验室有师兄弟做了石墨烯,针对其特性略知一二。能够确立地说,曹原所制取出去的独特石墨烯并不是常温下超导体(一般称室温超导体)。曹原仅22岁就已第一作者的身份在《自然》(Nature)杂志发布了几篇重磅文章,从而引起了全球的关心。要了解,之前评中科院工程院院士,只需一篇一作Nature或是Science就可以。尽管如今没有那样的状况了,但Nature或是Science在科学领域中归属于顶尖杂志期刊的影响力没法摇摆不定,非常少有些人能在上面发论文。

曹原的主要工作是石墨烯超导的科学研究,但这类石墨烯的超导体温度并不是是常温下,只是很低的温度,只比绝对零度了高了一点,相关曹原制备出室温超导体的报道不是实的。石墨烯源于于高纯石墨。高纯石墨是由双层氧原子层构成,各层中的氧原子以蜂巢状的好几个六边形排序在一起,各层中间的间距大概0.335纳米技术。假如把高纯石墨的双层构造脱离成一层一层的构造,获得的原材料便是石墨烯。因为石墨烯的独特构造,它具备出色的结构力学、电力学、磁学和热力学特性,因此,石墨烯改性材料一直全是科学研究网络热点。

曹原的科学研究是把双层石墨烯层叠在一起,随后根据转动双层造成不一样的视角来科学研究其导电能力。当他把视角转动到1.1度,而且把温度减少至1.7开尔文(即比绝对零度高了1.7度,-271.45℃),这类两层石墨烯原材料主要表现出了超导现象,变成零电阻器、彻底抗磁性的超导体。曹原制备出的石墨烯超导体归属于超低温超导体,其超导体临界值温度远小于冰度0℃,这类原材料并不是室温超导体。

人们制造出的最大温度超导体是LaH10,其超导体临界值温度为250开尔文,即-23℃,离室温超导体还有一些差别[3]。此外,这类原材料的超导现象必须在170吉帕斯卡的髙压(等同于地面大气压力的170千倍)下才可以完成。曹原的科学研究往往会引起关心,是由于只需简易实际操作,不用引进别的化学物质,就能使石墨烯发生超导现象。针对这类两层石墨烯超导体的深入分析,将能为高温超导体乃至室温超导体的科学研究指引方向。假如可以取得成功生产制造出室温超导体,这终将对新时代文明造成长远的危害。因而,曹原的科学研究具备十分关键的实际意义,这也是为什么他备受关心的缘故。

3. 曹原发现的石墨烯,是常温超导吗?

感谢朋友邀请。
常温(室温)超导
是人类梦寐以求的,但是目前人类只能实现绝对零度附近材料的超导性能,
曹元发现的石墨烯两层之间旋转特定角度之后实现的超导现象同样是在绝对零度附近1.7开尔文,大约是零下271摄氏度。
网上确实有大量的文章去夸张报道了,如果真的发现或者实现了常温超导,那么诺贝尔奖都会收入囊中的。曹元这两篇文章都是在2018年3月5日以第一作者身份发表在《nature》上,好多人对这件事关注度可能并没有那么高。
上图中显示的是在两个角度下逐渐降低温度大约在1.7开尔文的时候石墨烯的电阻急剧下降实现超导。
主要就是因为石墨烯旋转特定角度实现超导,这是一种非常规超导体,现有的主流理论无法解释。这跟之前发现的铜氧化物超导体是比较类似的,也是一种非常规超导体。
大家对于常规超导体的研究已经做了很大的努力,但是如果想要实现常规超导体的常温超导难度很大,很难实现。这样非常规超导体的出现就像是给我们另辟蹊径一样。
铜氧化物超导体被认为是最有可能实现室温超导体的,目前已经实现了零下140摄氏度温度下的超导现象。但是继续往下研究就比较困难,石墨烯旋转角度低温实现超导的方式,内在机理很可能是和铜氧化物超导体相似的。这给人类实现常温超导提供了新的路径,增加了一份可能性。
曹元发现的石墨烯超导虽然不是常温超导,但是意义依然重大,这很可能会成为人类实现常温超导路上的关键性一环。

曹原发现的石墨烯,是常温超导吗?

4. 曹原发现石墨烯超导有什么深刻意义

曹原发现石墨烯超导的意义在于,这一发现给超导研究提供了全新的思路,以及全新的实验平台,曹原的魔角石墨烯对于今后的超导材料研究有着深刻的意义,对以后石墨烯超导材料的实际应用开辟了光明前景。

知道这个魔角石墨烯有新物理原理需要去发现,尤其是对超导原理的解释和寻找高温超导材料。但是仍然不觉得这个能解决未来超导在室温的商业应用,制备太难,能耐受的超导电流太小,使用条件苛刻,材料属性所限我觉得也不容易发展成为高温超导。
通过将两片叠放的石墨烯交错至一个特殊的“魔角”,并将整体冷却到略高于绝对零度的温度,就能创造这一奇观。这种角度的旋转从根本上改变了双层石墨烯的性质:首先将其变为绝缘体,然后施加更强的电场,将其变为超导体。

石墨烯能出现超导行为并不新奇,研究人员此前曾通过将石墨烯与已知为超导体的材料相结合,或通过与其他元素进行化学拼接的方式,诱导出石墨烯的超导态。
举个例子,在1957年,三位物理学家联合提出BCS理论,该理论解释了第一类超导体,但是该理论有个极限--麦克米兰极限,表示温度高于39K后,超导现象不可能实现。

到1986年,两位科学家柏诺兹和缪勒,发现钡铜氧化物的超导转变温度高达35K,还发现氧化物类物质有可能突破麦克米兰极限;就在当年,其他科学家以此为思路,发现了超过麦克米兰极限的高温超导体,柏诺兹和缪勒也因此获得1987年诺贝尔物理学奖。

5. 发现石墨烯常温超导的曹原会成为国内第一个获得诺贝尔物理学奖的科学家吗?

《自然》连刊两文报道石墨烯超导重大发现,值得关注的是,本次两篇Nature论文的第一作者、麻省理工学院博士生曹原来自中国。2018年12月18日,曹原登上《自然》年度科学人物榜首。曹原,男,1996年出生,籍贯是四川成都,美国麻省理工学院博士生。在《自然》上以第一作者身份发表论文的最年轻中国学者。


首先声明一点,曹原发现的并不是常温超导现象,另外说明一下,如果现在有谁发现了常温超导现象的话,那么他一定可以得到诺贝尔物理学奖。这本来是去年的事,不知从何时起又被炒起来了,曹原是中国人,1996年出生的他现在正在麻省理工攻读博士学位,前一段时间他发现了石墨烯特殊超导现象,并且以第一作者的身份在世界顶级科学期刊Nature上发表了两篇论文,可以说是名声大振。

超导现象一直以来是科学家乐于研究的,如果一个导体实现了超导,那么就意味着用这个导体传输电流的时候不会发热,也就是不会导致能量损失,这对于科学界来说意义重大,如果常温超导可以实现,那么就意味着世界每年就会节省大量的电能,如果传输电量的材料可以使用超导体的话,那么就会将能源消耗减少到最低。


发现石墨烯的两人团体也获得过诺贝尔奖,由于这种材料的超强性能,被人不断给予新期待,有人拿它做过超导实验,不过没什么进展,而曹源这次的成果就是发现了石墨烯在电子导通和不导通两种状态下的转换,而这个如果能形成一种理论,那么这个临界点怎么形成的,别的材料能不能,如果能也需要什么条件,如果他和他的导师能总结给出一个理论,诺贝尔奖都盖不住他的光芒。

发现石墨烯常温超导的曹原会成为国内第一个获得诺贝尔物理学奖的科学家吗?

最新文章
热门文章
推荐阅读