非晶态材料的基本特征

2024-05-05 00:26

1. 非晶态材料的基本特征

非晶态材料具有三个基本特征。① 只存在小区间内的短程序,而没有任何长程序;波矢 k不再是一个描述运动状态的好量子数(见固体的能带)。② 它的电子衍射、中子衍射和 X射线衍射图是由较宽的晕和弥散的环组成;用电子显微镜看不到任何由晶粒间界、晶体缺陷等形成的衍衬反差。③ 任何体系的非晶态固体与其对应的晶态材料相比,都是亚稳态。当连续升温时,在某个很窄的温区内,会发生明显的结构变化,从非晶态转变为晶态,这个晶化过程主要取决于材料的原子扩散系数、界面能和熔解熵(见结构弛豫)。

非晶态材料的基本特征

2. 非晶态材料都有什么特点

但其组成的原子、分子的空间排列不呈现周期性和平移对称性,晶态的长程序受到破坏;只是由于原子间的相互关联作用,使其在几个原子(或分子)直径的小区域内具有短程序.由于至今尚无任何有效的实验方法可以准确测定非晶态材料的原子结构,上述定义都是相对而言的.taoyulun(站内联系TA)非晶态材料
1.XRD 上特点是没有尖锐出峰
2.HRTEM上没有晶格条纹
3.性能方面很杂乱!不能确定
4 和同样材料的单晶比较,机械强度一般巨大,可以达到几个数量级的差距!8dianbao(站内联系TA)非晶体
非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体.它没有一定规则的外形,如玻璃、松香、石蜡等.它的物理性质在各个方向上是相同的,叫“各向同性”.它没有固定的熔点.

3. 非晶态材料的介绍

非晶态材料也叫无定形或玻璃态材料, 这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数(一般在10泊,即10帕·秒以上,是典型流体的粘滞系数的10倍)。但其组成的原子、分子的空间排列不呈现周期性和平移对称性,晶态的长程序受到破坏;只是由于原子间的相互关联作用,使其在几个原子(或分子)直径的小区域内具有短程序。由于至今尚无任何有效的实验方法可以准确测定非晶态材料的原子结构,上述定义都是相对而言的。

非晶态材料的介绍

4. 非晶态的非晶态材料

 非晶态合金是近年来得到迅速发展、具有广阔应用前景的新材料,目前可用多种方法获得,其中电镀和化学镀方法以其工艺简便、成本低、可大面积镀覆等优点而日益受到人们的重视。Ni-P非晶态合金是该类材料中的型,在计算机硬磁盘、磁记录材料、电子材料、半导体材料等方面具有广泛的用途。今天对非晶态物质的制备和结构研究已取得很大的进展,各种具有特殊功能的非晶态材料不断涌现,非晶态材料科学已成为一门重要的分支学科。

5. 非晶态材料有哪些

但其组成的原子、分子的空间排列不呈现周期性和平移对称性,晶态的长程序受到破坏;只是由于原子间的相互关联作用,使其在几个原子(或分子)直径的小区域内具有短程序.由于至今尚无任何有效的实验方法可以准确测定非晶态材料的原子结构,上述定义都是相对而言的.taoyulun(站内联系TA)非晶态材料
1.XRD 上特点是没有尖锐出峰
2.HRTEM上没有晶格条纹
3.性能方面很杂乱!不能确定
4 和同样材料的单晶比较,机械强度一般巨大,可以达到几个数量级的差距!8dianbao(站内联系TA)非晶体
非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体.它没有一定规则的外形,如玻璃、松香、石蜡等.它的物理性质在各个方向上是相同的,叫“各向同性”.它没有固定的熔点.

非晶态材料有哪些

6. 非晶态材料的材料种类

非晶态材料的种类很多,硅土(SiO2),以及硅土和Al、Na、Mg、Ca等元素的氧化物的混合物构成最古老、最重要的无机玻璃,一些ⅤA-ⅥA和ⅦA族元素的混合物也较容易得到其玻璃态(如硫系玻璃)。除传统的玻璃和新近迅速发展的金属玻璃外,还包括非晶态半导体、非晶态高聚合物、非晶态电介质、非晶态离子导体等。近20多年来,由于非晶态材料优异的物理、化学特性和广泛的技术应用,使其得到了迅速的发展,成为一大类重要的新型固体材料。

7. 非晶态材料详细资料大全

  非晶态材料 也叫无定形或玻璃态材料,这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数(一般在10泊,即10帕·秒以上,是典型流体的粘滞系数的10倍)。
  基本介绍    中文名 :非晶态材料   别称 :无定形或玻璃态材料   性态 :刚性固体   基本特征1 :只存在小区间内的短程有序   基本特征2 :用电子显微镜看不到衍衬反差   基本特征3 :衍射图由较宽的晕和弥散的环组成   材料制备 :熔体急冷和从气相淀积   定义,基本特征,材料制备,材料特性,材料种类,套用,  定义  非晶态材料 也叫无定形或玻璃态材料,这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数(一般在10泊,即10帕·秒以上,是典型流体的粘滞系数的10倍)。但其组成的原子、分子的空间排列不呈现周期性和平移对称性,晶态的长程有序受到破坏;只是由于原子间的相互关联作用,使其在几个原子(或分子)直径的小区域内具有短程式。由于至今尚无任何有效的实验方法可以准确测定非晶态材料的原子结构,上述定义都是相对而言的。  基本特征  非晶态材料具有三个基本特征。 ① 只存在小区间内的短程式,而没有任何长程式;波矢   k  不再是一个描述运动状态的好量子数(见固体的能带)。 ② 它的电子衍射、中子衍射和 X射线衍射图是由较宽的晕和弥散的环组成;用电子显微镜看不到任何由晶粒间界、晶体缺陷等形成的衍衬反差。 ③ 任何体系的非晶态固体与其对应的晶态材料相比,都是亚稳态。当连续升温时,在某个很窄的温区内,会发生明显的结构变化,从非晶态转变为晶态,这个晶化过程主要取决于材料的原子扩散系数、界面能和熔解熵(见结构弛豫)。  材料制备  制备非晶态材料的方法很多,最常见的是熔体急冷和从气相淀积(如蒸发、离子溅射、辉光放电等)。近年来又发展了离子轰击、强雷射辐射和高温爆聚等新技术,并已能大规模连续生产。 一些具有足够粘度的液体,经快速冷却即可获得其玻璃态。1960年P.杜韦斯等人利用很高的冷却速率,将传统的玻璃工艺发展到金属和合金,制成对应的非晶态材料,称之为金属玻璃或玻璃态金属。其工艺原理如图所示。当射频加热线圈将样品熔融时,开启阀门,加压气流(如He、N、Ar等)冲破聚酯膜片,使样品从石英坩埚下端的喷嘴急速喷射到冷却铜块上,冷速可达10K/s以上,以获得其非晶态。除少数比较容易形成玻璃态的合金(如Pd-Cu-Si,Pd-Ni-P,Pt-Ni-P等)以外,大部分金属玻璃的冷却速率都相当高,一般在10~10K/s,厚度在50μm以内,也有先制成几十微米以内的非晶态细颗粒,再压结成块状非晶合金的。 一般认为,纯金属无法用目前达到的10~10K/s的冷却速度,由液态急冷得到玻璃态。所以,目前所有的玻璃态金属都包含有两种或两种以上的组元。大部分玻璃态合金都具有两种成分,一部分是金属性强的元素,如Cu、Ag、Au或过渡金属Fe、Co、Ni、Pd、Pt;另一部分是非金属、类金属元素,如3价的B,4价的C、Si、Ge,5价的P。前者的总和约占70~80at%(原子百分数),后者约占20at%,这样的组分配比可用非晶态固体的伯耳纳多面体模型加以解释。最易得到非晶态的组分是在合金相图的共晶点附近,其对应的熔化温度最低。  材料特性  作为一类特殊结构的刚性固体,金属玻璃具有比一般金属都高的强度(如非晶态 Fe80B20,断裂强度  σ F达37kgf/mm,为一般结构钢的七倍多);而且强度的尺寸效应很小。它的弹性也比一般金属好,弯曲形变可达50%以上。硬度和韧性也很高(维氏硬度HV一般在1000~2000左右)。 低含铬的铁基金属玻璃(如Fe27Cr8P13C7)的抗腐蚀性远比不锈钢为好。由于原子排列的长程无序,声子对传导电子散射的贡献很小,使其电阻率很高,室温下一般在 100μ  Ω ·cm 以上,电阻率的温度系数很小(低于±10K);在0K时具有很高的剩余电阻。在某些非晶态合金中(如PdSiCr),电阻在电阻温度曲线  T =  T m时存在一个极小值,当  T <  T m时,电阻随温度降低而升高,类似于晶态稀释合金中的近藤效应,其机制尚不清楚。 现已报导的非晶态急冷超导合金有15种,其超导转变温度为1.5~8.71K,比晶态超导体为低,其特点是耐辐照能力远比晶态为强。以过渡金属(铁、钴、镍)为基质的金属玻璃具有优异的软磁性能(见磁性材料),高导磁率和低交流损耗,远优于商用矽钢片,可和坡莫合金相比,如(Fe4Co96)(P16B6Al3)非晶态合金的矫顽力  H c≈0.13Oe,剩磁  B r≈4500G,有可能广泛套用于高、低频变压器(部分代替矽钢片和坡莫合金)、磁感测器、记录磁头、磁禁止材料等。 经过研究,玻璃内部结构没有“空间点阵”特点,而与液态的结构类似。只不过“类晶区”彼此不能移动,造成玻璃没有流动性。我们将这种状态称为“非晶态”。严格地说,“非晶态固体”不属于固体,因为固体专指晶体;它可以看作一种极粘稠的液体。因此,“非晶态”可以作为另一种物态提出来。除普通玻璃外,“非晶态”固体还很多,常见的有橡胶、石蜡、天然树脂、沥青和高分子塑胶等。  材料种类  非晶态材料的种类很多,矽土(SiO2),以及矽土和Al、Na、Mg、Ca等元素的氧化物的混合物构成最古老、最重要的无机玻璃,一些ⅤA-ⅥA和ⅦA族元素的混合物也较容易得到其玻璃态(如硫系玻璃)。 除传统的玻璃和新近迅速发展的金属玻璃外,还包括非晶态半导体、非晶态高聚合物、非晶态电介质、非晶态离子导体等。  套用  近20多年来,由于非晶态材料优异的物理、化学特性和广泛的技术套用,使其得到了迅速的发展,成为一大类重要的新型固体材料。 
   

非晶态材料详细资料大全

8. 非晶态金属材料和晶态金属材料的区别

非晶态金属得以广泛研究和应用的原因是它具 有结晶金属不具备的各种优良特性. 影响物质性能 的根本因素除了其成分外,就是原子的排列以及电 子状态. 从结构上看,非晶态金属的构造与结晶金属不同,原子排列紊乱无序,原子之间相互作用,电子 所处的状态都与结晶金属不同. 非晶态金属的这种 特殊结构,决定了其性能与结晶金属有很大差异. 除 此之外,还有一点应强调的是非晶态金属在成分上 的特殊性. 非晶态金属大都是多元素合金,从均匀的 液体状态快速冷却、凝固,使各元素能均匀分布,形 成一个固溶体. 添加各种不同的元素会使非晶态金 属产生各种不同性质. 这种在成分上自由调节的特 殊性给非晶态金属带来了很大影响. 结晶金属则不 同,多元素所形成的合金, 像平衡状态图所示的一 样,大部分都形成化合物,或是分离成几个相,多元 素在一个相中均匀的混合,形成固溶体的范围少. 所 以,结晶金属不具备非晶态金属的多种元素任意、均 匀混合的特点,结构和成分上的特殊性决定了非晶 态金属有各种特殊性能. 非晶态金属位错密度高,宏观组织均一,没有晶 界等缺陷,被认为是一种具有高韧性、高强度的材 料. 实验证明,非晶态金属的强度比结晶金属材料要 高得多. 铁系非晶态金属的最高强度达 450 kg/ mm 2 ,钴系和镍系也达 300 kg/ mm 2 以上,比人们所 知的强度最高的钢丝线强度(直径为0. 18 mm的钢 丝线强度为280 kg/ mm 2 ) 还高. 非晶态金属中虽然含有许多非铁磁性元素,难 以得到很强的磁化,但其没有结晶金属的磁的各向 异性,也不存在阻碍磁畴壁移动的结晶缺陷及析出 物,因而它的磁滞损失非常小. 此外,非晶态金属的 电阻率是结晶金属的 5~6 倍, 它的涡流损失也很 小. 非晶态金属是极理想的软磁材料,它具有低矫顽 力、高导磁率及高频特性好等优良特性. 由于非晶态 金属没有成分变化而引起相变现象,磁性可以随成 份连续变化,所以可以做出各种特性的非晶态磁性 金属. 从构造上看, 非晶态金属没有晶界、层错等缺 陷,没有偏析、析出及异相,当添加适当元素形成亚 稳态后,会显示出惊人的抗腐蚀性,在酸性、中性或 碱性等各种溶液中长期浸泡而不被腐蚀. 如在 Fe 基 合金中添加Cr 和 Mo ,其耐腐蚀性之强令人难以置 信. 可以说,这是非晶态金属的构造特殊性和成分特 殊性而带来的结果. 非晶态金属除了高强韧性、超耐腐蚀性和软磁 性外,还具备许多其他特性,如耐放射线损伤. 通常 中子照射到结晶金属上后,原子的点阵排列会遭到 破坏,出现很多缺陷使材料性能下降,但是非晶态金 属在放射线长期照射后既不脆化,导电性也不下降. 将来人类可利用原子能以及氢的核聚变能解决能源 问题. 由于原子炉以及核聚变炉中有大量的放射线, 因此,要求耐照射损伤的材料,非晶态金属的耐放射 线损伤的特性将有助于解决这一问题. 非晶态金属的构造可以看成是无数个缺陷的组 合体. 表面处于非常活泼的化学状态,可以作为很有 前途的催化剂材料. 另外,很多非晶态金属具有超导 性,可作为贮氢材料减轻材料粉化的问题等. 非晶态 金属的历史还很短,随着其研究的深入,还会发现许 多新的特性.
最新文章
热门文章
推荐阅读