超导磁悬浮列车的工作原理是怎样的?

2024-05-14 20:03

1. 超导磁悬浮列车的工作原理是怎样的?

普通火车由于车轮与车轨之间存在着摩擦力,最高时速不可能超过300千米。于是,人们设想制造一种不靠车轮行驶的列车。就是说,列车行驶时不与车轨接触,而是浮在车轨上,只与空气摩擦,这样受到的阻力就小得多了,列车自然也就能跑得更快。现在这一设想已经实现了。人们利用超导磁体产生磁场,使它与另一磁场产生斥力,而这种斥力又使列车悬浮起来并且推动列车前进。这样一种没有车轮的新型列车诞生了,这种列车就是“超导磁悬浮列车”,时速可达到300千米以上,甚至达到500千米,这个速度都快赶上现在飞机的速度了。超导磁悬浮列车的乘客不会感到列车的颠簸,也不会听到车轮与铁轨的撞击声。它将是陆地上理想而舒适的交通工具。

超导磁悬浮列车的工作原理是怎样的?

2. 超导磁悬浮列车原理

磁悬浮列车的工作原理:
世界上的磁悬浮列车主要有两种“悬浮”形式,一种是推斥式;另一种为吸力式。
推斥式是利用两个磁铁同极性相对而产生的排斥力,使列车悬浮起来。这种磁悬浮列车车厢的两侧,安装有磁场强大的超导电磁铁。车辆运行时,这种电磁铁的磁场切割轨道两侧安装的铝环,致使其中产生感应电流,同时产生一个同极性反磁场,并使车辆推离轨面在空中悬浮起来。但是,静止时,由于没有切割电势与电流,车辆不能产生悬浮,只能像飞机一样用轮子支撑车体。当车辆在直线电机的驱动下前进,速度达到80公里/小时以上时,车辆就悬浮起来了。
吸力式是利用两个磁铁异性相吸的原理,将电磁铁置于轨道下方并固定在车体转向架上,两者之间产生一个强大的磁场,并相互吸引时,列车就能悬浮起来。这种吸力式磁悬浮列车无论是静止还是运动状态,都能保持稳定悬浮状态。这次,我国自行开发的中低速磁悬浮列车就属于这个类型。 
“若即若离”,是磁悬浮列车的基本工作状态。磁悬浮列车利用电磁力抵消地球引力,从而使列车悬浮在轨道上。在运行过程中,车体与轨道处于一种“若即若离”的状态,磁悬浮间隙约1厘米,因而有“零高度飞行器”的美誉。它与普通轮轨列车相比,具有低噪音、低能耗、无污染、安全舒适和高速高效的特点,被认为是一种具有广阔前景的新型交通工具。特别是这种中低速磁悬浮列车,由于具有转弯半径小、爬坡能力强等优点,特别适合城市轨道交通。 
磁悬浮列车运行原理 :
是利用电磁力抵消地球引力,通过直线电机进行牵引,使列车悬浮在轨道上运行(悬浮间隙约1厘米)。
磁悬浮列车的种类: 
磁悬浮列车分为常导型和超导型两大类。
常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400~500公里,适合于城市间的长距离快速运输。
超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。
这两种磁悬浮列车各有优缺点和不同的经济技术指标,德国青睐前者,集中精力研制常导高速磁悬浮技术;而日本则看好后者,全力投入高速超导磁悬浮技术之中。 
常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 
常导磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就象是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就象同步直线电动机的长定子绕组。从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就象电机的“转子”一样被推动做直线运动。从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。
如果您满意我的回答,请及时点击【采纳为满意回答】按钮!!!
手机提问的朋友在客户端右上角评价点【满意】即可!!!
你的采纳是我前进的动力!!!
谢谢!!!

3. 超导磁浮列车和高温超导磁浮列车有什么区别?

超导磁浮列车是利用超导磁铁使车体上浮,通过周期性的变化磁极方向而获取推动力的列车。超导磁浮列车的运行除了高速外,还具有无污染、无振动、省能源的特点,可望成为21世纪陆地交通工具的主力。
目前正在研究开发的超导磁浮列车使用的是普通超导材料,列车的时速以达到500公里为开发目标。更加新颖的下一代超导磁浮列车将使用高温超导材料,列车的时速可望达到700公里。
如果把超导磁浮列车的实用化算作100的话,目前的开发研究已处于80的相对阶段,预计在2010年可望实现实用化;而下一代的高温超导磁浮列车则将在2030年左右投入运行。当前世界上对超导磁浮列车的研究,日本的水平领先于世。
为使超导磁浮列车早日实用化,需要开发高温超导体材料,探究在列车高速通过隧道时的空气力学特性,开发磁性屏蔽技术和列车控制系统等技术。还必须认真研究磁性对生物界的影响。

超导磁浮列车和高温超导磁浮列车有什么区别?

4. 上海磁悬浮列车是超导的吗?

是的。是高温超导技术。
偶就住在上海,可惜没乘过。
前两天还着火了说
给你介绍一下超导吧。
超导
1911年,荷兰莱顿大学的卡茂林-昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林-昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。
这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中流大的电流,从而产生超强磁场。
1933年,荷兰的迈斯纳和奥森菲尔德共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,这一超导体内的磁感兴强度为零,却把原来存在于体内的磁场排挤出去。对单晶锡球进行实验发现:锡球过渡到超导态时,锡球周围的磁场突然发生变化,磁力线似乎一下子被排斥到超导体之外去了,人们将这种现象称之为“迈斯纳效应”。
后来人们还做过这样一个实验:在一个浅平的锡盘中,放入一个体积很小但磁性很强的永久磁体,然后把温度降低,使锡盘出现超导性,这时可以看到,小磁铁竟然离开锡盘表面,慢慢地飘起,悬空不动。
迈斯纳效应有着重要的意义,它可以用来判别物质是否具有超性。
为了使超导材料有实用性,人们开始了探索高温超导的历程,从1911年至1986年,超导温度由水银的4.2K提高到23.22K(OK=-273°C)。86年1月发现钡镧铜氧化物超导温度是30K,12月30日,又将这一纪录刷新为40.2K,87年1月升至43K,不久又升至46K和53K,2月15日发现了98K超导体,很快又发现了14°C下存在超导迹象,高温超导体取得了巨大突破,使超导技术走向大规模应用。
超导材料和超导技术有着广阔的应用前景。超导现象中的迈斯纳效应使人们可以到用此原理制造超导列车和超导船,由于这些交通工具将在无磨擦状态下运行,这将大大提高它们的速度和安静性能。超导列车已于70年代成功地进行了载人可行性试验,1987年开始,日本国开始试运行,但经常出现失效现象,出现这种现象可能是由于高速行驶产生的颠簸造成的。超导船已于1992年1月27日下水试航,目前尚未进入实用化阶段。利用超导材料制造交通工具在技术上还存在一定的障碍,但它势必会引发交通工具革命的一次浪潮。
超导材料的零电阻特性可以用来输电和制造大型磁体。超高压输电会有很大的损耗,而利用超导体则可最大限度地降低损耗,但由于临界温度较高的超导体还未进入实用阶段,从而限制了超导输电的采用。随着技术的发展,新超导材料的不断涌现,超导输电的希望能在不久的将来得以实现。
现有的高温超导体还处于必须用液态氮来冷却的状态,但它仍旧被认为是20世纪最伟大的发现之一。

5. 超导磁浮列车

超导磁浮列车的实用化进度已经达到八成的相对阶段,距离实现实用化还有两成。

超导磁浮列车

6. 超导磁悬浮的定义

在列车车轮旁边安装小型超导磁体,在列车向前行驶时,超导磁体则向轨道产生强大的磁场,并和安装在轨道两旁的铝环相互作用,产生一种向上浮力,消除车轮与钢轨的摩擦力,起到加快车速的作用。高温超导体在悬浮列车上应用的研究集中在日本 。超导在运载上的其他应用可能还有用作轮船动力的超导电机、电磁空间发射工具及飞机悬浮跑道 。

7. 超导相吸型磁悬浮列车的工作原理

磁悬浮列车分为常导型和超导型两大类。常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400~500公里,适合于城市间的长距离快速运输。而超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两种磁悬浮列车各有优缺点和不同的经济技术指标,德国青睐前者,集中精力研制常导高速磁悬浮技术;而日本则看好后者,全力投入高速超导磁悬浮技术之中。 
超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。 

超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。其原理就象冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。 

超导磁悬浮列车也是由沿线分布的变电所向地面导轨两侧的驱动绕组提供三相交流电,并与列车下面的动力集成绕组产生电感应而驱动,实现非接触性牵引和制动。但地面导轨两侧的悬浮导向绕组与外部动力电源无关,当列车接近该绕组时,列车超导磁铁的强电磁感应作用将自动地在地面绕组中感生电流,因此在其感应电流和超导磁铁之间产生了电磁力,从而将列车悬起,并经精密传感器检测轨道与列车之间的间隙,使其始终保持100毫米的悬浮间隙。同时,与悬浮绕组呈电气连接的导向绕组也将产生电磁导向力,保证了列车在任何速度下都能稳定地处于轨道中心行驶。

超导相吸型磁悬浮列车的工作原理

8. 磁悬浮列车是否应用了超导材料?

经过数十年的发展,时至今日,磁悬浮技术形成了分别以德国和日本为代表的两大研究方向——EMS系统和EDS系统。德国认准的EMS(常导磁吸型)系统,是利用常规的电磁铁与一般铁性物质相吸引的基本原理,把列车吸附上来悬浮运行。日本看好的EDS(超导磁斥行)系统,则是用超导的磁悬浮原理,使车轮和钢轨之间产生排斥力,使列车悬空运行。目前两种车型都达到了500公里左右的时速,两种方案都切实可行,孰优孰劣,也确实难分高下。
   世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后,从浦东龙阳路站到浦东国际机场,三十多公里只需6~7分钟。上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。
   电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。
  电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。
最新文章
热门文章
推荐阅读