关于数学的资料

2024-04-30 17:22

1. 关于数学的资料

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).

扩展资料:
数学分支
一、数学史
二、数理逻辑与数学基础 a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
三、数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
四、代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
五、代数几何学
六、几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
七、拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
八、数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
九、非标准分析
十、函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
十一、常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
十二、偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
十三、动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
十四、积分方程
十五、泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
十六、计算数学
a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
十七、概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
十八、数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
十九、应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
二十、应用统计数学其他学科
二十一、运筹学
a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
二十二、组合数学 
二十三、模糊数学
二十四、量子数学
二十五、应用数学 (具体应用入有关学科)
二十六、数学其他学科
参考资料:百度百科-数学

关于数学的资料

2. 关于数学的资料

陈省身(国语罗马字:Shiing-shen Chern,1911年10月28日—2004年12月3日),美国华裔数学家、教育家,国际微分几何大师。美国国家科学院院士、中央研究院院士,同时是法国科学院、意大利国家科学院、英国皇家学会和中国科学院的外籍院士。 

1911年生于浙江嘉兴秀水县。1922年秀州中学毕业,来到天津。1923年入扶轮中学(今天津铁路一中)。1926年毕业,入南开大学数学系,1930年毕业,获学士学位。同年入清华大学任助教并攻读研究生,师从中国微分几何先驱孙光远,研究射影微分几何,1934年毕业,获硕士学位,为中国自己培养的第一名数学研究生。同年获中华文化教育基金会奖学金(一说受清华大学资助),赴德国汉堡大学学习,师从著名几何学家布拉希开(Blaschke),1936年2月获科学博士学位;毕业时奖学金还有剩余,于是又转去法国巴黎跟从嘉当(E.Cartan)研究微分几何。 

1937年,陈省身担任清华大学教授;后因抗战随学校内迁至云南昆明,在北京大学、清华大学、南开大学合组的西南联合大学讲授微分几何。 

1943年,应美国数学家维布伦(O.Veblen)之邀,到普林斯顿高级研究所工作。此后两年间,他完成了一生中最重要的工作:证明高维的高斯-邦内公式(Gauss-Bonnet Formula),构造了现今普遍使用的陈示性类,为整体微分几何奠定了基础。 

1946年抗战胜利后,回到上海,主持中央研究院数学研究所的工作,此后两三年中,他培养了一批青年拓扑学家。1949年初,中央研究院迁往台湾,陈省身应普林斯顿高级研究所所长奥本海默之邀举家迁往美国。1949年夏,在芝加哥大学接替了E.P.Lane的教授职位;E.P.Lane正是陈省身的导师孙光远当年在美留学时的导师;在此为复兴美国的微分几何做出了重要贡献。1960年,陈省身受聘为加州大学伯克利分校教授,直到1980年退休为止。1961年当选为美国科学院院士,1963年至1964年间,任美国数学会副主席。陈省身晚年的一项重要贡献是1981年在加州大学柏克莱分校筹建以纯粹数学为主的美国国家数学研究所,他是第一任所长。 

1984年退休,陈省身先后受聘为北京大学、南开大学名誉教授。1985年,受中华人民共和国教育部之聘担任南开大学数学研究所所长。同年南开大学授予他名誉博士学位。 

自1986年起,中国数学会设立并承办“陈省身数学奖”。 

北京时间2004年12月3日19时14分,陈省身在天津逝世。 

丘成桐、吴文俊、廖山涛、郑绍远等著名学者都曾师从陈省身。 

[编辑] 
成就 
陈省身结合微分几何与拓扑方法,先后完成了两项划时代的重要工作:其一为黎曼流形的高斯-博内一般公式,另一为埃尔米特流形的示性类论。他引进的一些概念、方法与工具,已远远超出微分几何与拓扑学的范围而成为整个现代数学中的重要构成部分。陈省身其他重要的数学工作有: 

紧浸入与紧逼浸入,由他和R.莱雪夫开始,历30余年,其成就已汇成专著。 
复变函数值分布的复几何化,其中一著名结果是陈-博特定理。 
积分几何的运动公式,其超曲面的情形系同严志达合作。 
复流形上实超曲面的陈�莫泽理论,是多复变函数论的一项基本工作。 
极小曲面和调和映射的工作。 
陈-西蒙斯微分式是量子力学异常现象的基本工具。 
[编辑] 
荣誉 
陈省身获得了许多科学荣誉。 

1961年,陈省身继物理学家吴健雄之后当选为第二位华裔美国国家科学院院士,这是美国科学界的最高荣誉职位。 
1970年,获得美国数学协会的肖夫内奖。 
1976年,获美国福特总统颁发的美国国家科学奖章,这是美国在科学、数学、工程方面的最高奖;陈省身和吴健雄是最早获得该项荣誉的华人科学家。 
1983年,美国数学会“全体成就”的斯蒂尔奖。 
1984年获以色列总统贺索颁发的沃尔夫数学奖,这是世界数学领域的最高奖项;陈省身是获得沃尔夫奖荣誉的第一位华裔数学家、第二位华裔科学家。 
此外,他还曾获得美国数学学会颁发的Chau-venet奖(1970年)、Steele奖(1983年)。并曾获得德国洪堡奖、俄罗斯罗巴切夫斯基数学奖等奖项。另外,他在2004年获首届邵逸夫数学科学奖。11月2日,经国际天文学联合会下属的小天体命名委员会讨论通过,1998CS2小行星被命名为“陈省身星”。 

陈省身曾经三次应邀在国际数学家大会上作演讲:1950年在美国波士顿的剑桥,1958年在苏格兰的爱丁堡,1970年在法国的尼斯。1950年和1970年都是一小时报告,这是国际数学家大会上最高规格的学术演讲。 

陈省身曾出任美国数学学会副主席。他还是法国、意大利、中国等国的外籍院士。他也是第三世界科学院的创始发起者,英国皇家学会国外会员,巴西科学院的通讯院士,印度数学会名誉会员等。他曾被瑞士联邦理工大学、柏林工业大学、香港科技大学等多所著名大学授予荣誉博士学位。 

陈省身被认为是20世纪最伟大的微分几何学家。陈省身和华罗庚、冯康被认为是三位具有世界顶尖成果和国际性影响的华人数学家。他还是菲尔茨奖得主丘成桐在伯克莱加州大学的导师。 


吴文俊 


吴文俊,中国人,1919年5月12日生于上海。1940年毕业于上海交通大学,1949年在法国斯特拉斯堡大学获博士学位。1951年回国,1957年任中国科学院学部委员,1984年当先为中国数学会理事长。吴文俊在数学上作出了许多重大的贡献。 


拓扑学方面,在示性类、示嵌类等领域获得一系列成果,还得到了许多著名的公式,指出了这些理论和方法的广泛应用。他还在拓扑不变量、代数流形等问题上有创造性工作。1956年吴文俊因在拓扑学中的示性类和示嵌类方面的卓越成就获中国自然科学奖一等获。 


机器证明方面,从初等几何着手,在计算机上证明了一类高难度的定理,同时也发现了一些新定理,进一步探讨了微分几何的定理证明。提出了利用机器证明与发现几何定理的新方法。这项工作为数学研究开辟了一个新的领域,将对数学的革命产生深远的影响。1978年获全国科学大会重大科技成果奖。 


中国数学史方面,吴文俊认为中国古代数学的特点是:从实际问题出发,经过分析提高,再抽象出一般的原理、原则和方法,最终达到解决一大类问题的目的。他对中国古代数学在数论、代数、几何等方面的成就也提出了精辟的见解 



吴文俊 科技名人 

数学家。 上海人。 1940年毕业于上海交通大学。 1949年获法国国家科学研究中心博士学位。 1991年当选为第三世界科学院院士。中国科学院数学与系统科学研究院系统科学研究所研究员、名誉所长,中国数学会名誉理事长。中国数学机械化研究的创始人之一。 50年代在示性类、示嵌类等研究方面取得吴文俊公式、吴文...... 


吴文俊(1919~ ) 

中国数学家。中国科学院院士。1919年5月12日生于上海。1940年毕业于上海交通大学。1947年赴法国留学,先后在斯特拉斯堡、巴黎、法国科学研究中心进行数学研究,1949年获博士学位。1951年回国。历任北京大学数学系教授,中国科学院数学研究所研究员、副所长,中国科学院系统科学研究所研究员、副所长、名誉所长,数学机械化研究中心主任,中国数学会理事长、名誉理事长,中国科学院数学物理学部常务委员、主任等职。曾任全国政协常务委员。主要从事拓扑学、机器证明学等方面的研究并取得多项突出成果,是中国数学机械化研究的创始人之一。1952年刊印出版的博士论文《球纤维空间示性类理论》是对纤维空间基本问题的重要贡献。50年代在示性类、示嵌类等研究方面取得一系列突出成果,并有许多重要应用,被国际数学界称为“吴文俊公式”、“吴文俊示性类”,已被编入许多名著。这项成果曾获1956年国家自然科学奖一等奖。60年代继续进行示嵌类方面的研究,独创性地发现了新的拓扑不变量,其中关于多面体的嵌入和浸入方面的成果至今仍居世界领先地位。在庞特雅金示性类方面的成果,是拓扑学纤维丛理论和微分流形的几何学的一项基本理论研究,有深刻的理论意义。近年来创立了定理机器证明的吴文俊原理(国际上称为吴方法),实现了初等几何与微分几何定理的机器证明,达到了世界先进水平。这一重要创新改变了自动推理研究的面貌,在定理机器证明领域产生了巨大影响,并有重要的应用价值,它将引起数学研究方式的变革。这方面的研究成果曾获全国科学大会重大成果奖和中国科学院科技进步奖一等奖。在机器发现和创造定理的研究方面也取得了重要成果。
刘 徽 
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产. 

贾 宪 
贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 

他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 
秦九韶 
秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 
李冶 
李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 
朱世杰 
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 
祖冲之 
祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 

祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。 
祖 暅 
祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 
杨辉 
杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 
赵 爽 
赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 

赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了"重差术"的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。 

华罗庚 
华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。 
1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 40年代,解决了高斯完整三角和的估计这 
一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈 
代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。 
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出 
了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 
当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍 
德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居 
世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之 
一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 
调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 
奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作 
并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 
“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。 
陈景润 
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 
学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 
际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 
元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 
进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 
,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 
生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作 


中国著名数学家 许宝騄 华罗庚 陈省身 林家翘 吴文俊 
陈景润 丘成桐 张 衡 刘 徽 祖冲之 
杨 辉 姜立夫 陈建功 熊庆来 苏步青 
江泽涵
回答者:hqm4721 - 高级经理 七级 4-21 14:20
评价已经被关闭 目前有 4 个人评价 
     好
100% (4) 不好
0% (0) 

对最佳答案的评论
太好了
评论者: 136569769 - 试用期 一级 

陈景润 华罗庚 杨辉 祖暅 祖冲之
评论者: 122400 - 魔法学徒 一级 

很齐全呢!
评论者: 不二的芥末寿司 - 试用期 一级 

其他回答共 1 条
刘徽(生于公元250年左右) 
是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产 

贾宪 
中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 
主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。 

秦九韶(约1202--1261) 
字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 

李冶(1192----1279) 
原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。 

朱世杰(1300前后) 
字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法). 

祖冲之(公元429~500年) 
祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 
在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。 

祖暅 
祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。 

杨辉 
中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 
他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 
他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 

华罗庚 
中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 
1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。 
代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。 

陈景润 
数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学 
数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合 数学》等著作。

3. 关于数学的资料

数学名人的话:数学王子高斯,被誉为历史上最伟大的数学家之一,高斯发明了最小二乘法原理。高斯的数论研究总结在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。 他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。
陈景润:陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。 他研究哥德巴赫猜想和其他数论问题的成就,至今仍然在世界上遥遥领先,被称为哥德巴赫猜想第一人。 世界级的数学大师、美国学者安德烈·韦伊曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”     
还有 阿基米德 毕达哥拉斯 华罗庚 祖从之等
数学名人小笑话:物理学家和工程师乘着热气球,在大峡谷中迷失了方向。 
他们高声呼救:“喂——!我们在哪儿?” 
过了大约15分钟,他们听到回应在山谷中回荡:“喂——!你们在热气球里!” 
物理学家道:“那家伙一定是个数学家。” 
工程师不解道:“为什么?” 
物理学家道:“因为他用了很长的时间,给出一个完全正确的答案,但答案一点用也没有。” 
(这个很经典,我看到很多杂志都登过)
一天,数学家觉得自己已受够了数学,于是他跑到消防队去宣布他想当消防员。 
消防队长说:“您看上去不错,可是我得先给您一个测试。” 
消防队长带数学家到消防队后院小巷,巷子里有一个货栈,一只消防栓和一卷软管。消防队长问:“假设货栈起火,您怎么办?” 
数学家回答:“我把消防栓接到软管上,打开水龙,把火浇灭。” 
消防队长说:“完全正确!最后一个问题:假设您走进小巷,而货栈没有起火,您怎么办?” 
数学家疑惑地思索了半天,终于答道:“我就把货栈点着。” 
消防队长大叫起来:“什么?太可怕了!您为什么要把货栈点着?” 
数学家回答:“这样我就把问题化简为一个我已经解决过的问题了。” 
(这个也还可以,我们老师讲过) 
我觉得你也可以写一下数学的起源: 数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。
    远在1 万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。
    这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且还在不断发展下去。


  这些我也是自己边想边查的质料,希望对你有帮助,有些地方精简了的!!!可能还是有点多!!你在真理一哈嘛!!加油做吧!!
 O(∩_∩)O!

关于数学的资料

4. 关于数学的资料

陈省身(国语罗马字:Shiing-shen Chern,1911年10月28日—2004年12月3日),美国华裔数学家、教育家,国际微分几何大师。美国国家科学院院士、中央研究院院士,同时是法国科学院、意大利国家科学院、英国皇家学会和中国科学院的外籍院士。 

1911年生于浙江嘉兴秀水县。1922年秀州中学毕业,来到天津。1923年入扶轮中学(今天津铁路一中)。1926年毕业,入南开大学数学系,1930年毕业,获学士学位。同年入清华大学任助教并攻读研究生,师从中国微分几何先驱孙光远,研究射影微分几何,1934年毕业,获硕士学位,为中国自己培养的第一名数学研究生。同年获中华文化教育基金会奖学金(一说受清华大学资助),赴德国汉堡大学学习,师从著名几何学家布拉希开(Blaschke),1936年2月获科学博士学位;毕业时奖学金还有剩余,于是又转去法国巴黎跟从嘉当(E.Cartan)研究微分几何。 

1937年,陈省身担任清华大学教授;后因抗战随学校内迁至云南昆明,在北京大学、清华大学、南开大学合组的西南联合大学讲授微分几何。 

1943年,应美国数学家维布伦(O.Veblen)之邀,到普林斯顿高级研究所工作。此后两年间,他完成了一生中最重要的工作:证明高维的高斯-邦内公式(Gauss-Bonnet Formula),构造了现今普遍使用的陈示性类,为整体微分几何奠定了基础。 

1946年抗战胜利后,回到上海,主持中央研究院数学研究所的工作,此后两三年中,他培养了一批青年拓扑学家。1949年初,中央研究院迁往台湾,陈省身应普林斯顿高级研究所所长奥本海默之邀举家迁往美国。1949年夏,在芝加哥大学接替了E.P.Lane的教授职位;E.P.Lane正是陈省身的导师孙光远当年在美留学时的导师;在此为复兴美国的微分几何做出了重要贡献。1960年,陈省身受聘为加州大学伯克利分校教授,直到1980年退休为止。1961年当选为美国科学院院士,1963年至1964年间,任美国数学会副主席。陈省身晚年的一项重要贡献是1981年在加州大学柏克莱分校筹建以纯粹数学为主的美国国家数学研究所,他是第一任所长。 

1984年退休,陈省身先后受聘为北京大学、南开大学名誉教授。1985年,受中华人民共和国教育部之聘担任南开大学数学研究所所长。同年南开大学授予他名誉博士学位。 

自1986年起,中国数学会设立并承办“陈省身数学奖”。 

北京时间2004年12月3日19时14分,陈省身在天津逝世。 

丘成桐、吴文俊、廖山涛、郑绍远等著名学者都曾师从陈省身。

5. 关于数学的资料

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格??)、序结构(偏序,全序??)、拓扑结构(邻域,极限,连通性,维数??).

扩展资料:
数学分支
一、数学史
二、数理逻辑与数学基础 a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
三、数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
四、代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
五、代数几何学
六、几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
七、拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
八、数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
九、非标准分析
十、函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
十一、常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
十二、偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
十三、动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
十四、积分方程
十五、泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
十六、计算数学
a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
十七、概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
十八、数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
十九、应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
二十、应用统计数学其他学科
二十一、运筹学
a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
二十二、组合数学 
二十三、模糊数学
二十四、量子数学
二十五、应用数学 (具体应用入有关学科)
二十六、数学其他学科
参考资料:百度百科-数学

关于数学的资料

6. 关于数学的资料

中国著名数学家 
刘徽
 
刘徽
刘徽(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东邹平人。终生未做官。他在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产. 
 
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作. 

 
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目. 
 
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人. 
 
祖冲之
 
祖冲之
祖冲之(公元429年─公元500年)是中国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于未文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。其主要贡献在数学、天文历法和机械三方面。在数学方面,他写了《缀术》一书,被收入著名的《算经十书》中,作为唐代国子监算学课本,可惜后来失传了。祖冲之还和儿子祖暅一起圆满地利用「牟合方盖」解决了球体积的计算问题,得到正确的球体积公式。在机械学方面,他设计制造过水碓磨、铜制机件传动的指南车、千里船、定时器等等。此外,对音乐也研究。他是历史上少有的博学多才的人物。月球上还有一座环形山是以他的名字命名的。
 
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 
求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中355/113取六位小数是3.141592,它是分子分母在16604以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接12288边形,这需要花费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 
外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 
 
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元. 
 
祖冲之还与他的儿子祖暅(也是中国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 
但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".祖冲之也制造过许多工具,如指南车等。

张丘建
 
张丘建
 
《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间。张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西《算术之钥》等著作中均出现有相同的问题。
 
朱世杰:《四元玉鉴》
 
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。 
 
贾宪
 
中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。 

 
贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。 
 
秦九韶:《数书九章》
 
秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。 
 
李冶
 
随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。 
 
李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。
 
成果
 
华人数学家的研究成果
 
中国古代算术的许多研究成果里面就早已孕育了后来西方数学才涉及的思想方法,近现代也有不少世界领先的数学研究成果就是以华人数学家命名的: 

 
【李善兰恒等式】数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李善兰恒等式”(或李氏恒等式)。 
 
华罗庚
【华氏定理】数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。 
 
【苏氏锥面】数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。 
 
【熊氏无穷级】数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。 
 
【陈示性类】数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。 
 
【周氏坐标】数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。
 
【吴氏方法】数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”。 
 
【王氏悖论】数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”。 
 
【柯氏定理】数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”。
 
陈景润
【陈氏定理】数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”。
 
【杨—张定理】数学家杨乐和张广厚在函数论方面的研究成果被国际上称为“杨—张定理”。 
 
【陆氏猜想】数学家陆启铿关于常曲率流形的研究成果被国际上称为“陆氏猜想”。 
 
【夏氏不等式】数学家夏道行在泛函积分和不变测度论方面的研究成果被国际数学界称为“夏氏不等式”。
 
【姜氏空间】数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”;另外还有以他命名的“姜氏子群”。
 
【侯氏定理】数学家侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”。
 
【周氏猜测】数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”。
 
【王氏定理】数学家王戌堂关于点集拓扑学的研究成果被国际数学界誉为“王氏定理”。
 
【袁氏引理】数学家袁亚湘在非线性规划方面的研究成果被国际上命名为“袁氏引理”。
 
【景氏算子】数学家景乃桓在对称函数方面的研究成果被国际上命名为“景氏算子”。
 
【陈氏文法】数学家陈永川在组合数学方面的研究成果被国际上命名为“陈氏文法”。
 
研究表明,数学焦虑程度较高的人,不仅趋向于回避与数学相关的事物,并且不愿意从事与数学相关的职业。芝加哥大学的研究显示,这些回避都源于疼痛焦虑。研究人员说:“这是首次从神经层面揭示了数学焦虑这种主观体验的本质。”
 
这种焦虑不仅仅限于数学。英国《每日邮报》援引科学家的研究称,担心过圣诞节花钱,计算下饭馆要给多少小费,算一算家庭开销,都可能会给对做数学题有内在恐惧感的人带来身体上的痛苦。[3]
 
编辑本段数学文化
 
外国名言
 
数学符号之美
万物皆数--毕达哥拉斯
 
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。——毕达哥拉斯
 
数统治着宇宙。--毕达哥拉斯
 
几何无王者之道。——欧几里德
 
我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。——笛卡儿(Rene Descartes 1596-1650)
 
数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。——笛卡儿
 
虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。——莱布尼茨(Gottfried Wilhelm von Leibniz 
1646-1716)
 
不发生作用的东西是不会存在的。——莱布尼茨
 
考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。——莱布尼茨
 
虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。——欧拉(Leonhard Euler 1707-1783)
 
因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。——欧拉
 
数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 
数学是科学之王。——高斯
 
数学是自然科学之首,而数论是数学中的皇后。——高斯
 
这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。——拉普拉斯(Pierre Simon Laplace 
1749-1827)
 
在数学这门科学里,我们发现真理的主要工具是归纳和类比。——拉普拉斯
 
读读欧拉,读读欧拉,他是我们大家的老师。——拉普拉斯
 
一个国家只有数学蓬勃发展,才能表现她的国力强大。——拉普拉斯
 
认识一位巨人的研究方法,对於科学的进步并不比发现本身更少用处。科学研究的方法经常是极富兴趣的部分。——拉普拉斯
 
写满数学公式的纸
如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。——柯西(Augustin Louis Cauchy 
1789-1857)
 
给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。——柯西
 
人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展.——柯西
 
几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。——西尔维斯特(James Joseph Sylvester 
1814-1897)
 
也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其他数学家加在一起还要多。——西尔维斯特
 
一个没有几分诗人才能的数学家决不会成为一个完全的数学家。——魏尔斯特拉斯(Karl Weierstrass 
1815-1897)
 
数学的本质在於它的自由。——康扥尔
 
数学的领域中, 提出问题的艺术比解答问题的艺术更为重要。——康托尔
 
只要一门科学分支能提出大量的问题, 它就充满着生命力, 
而问题缺乏则预示独立发展的终止或衰亡。 ——希尔伯特
 
音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因
 
没有那门学科能比数学更为清晰的阐明自然界的和谐性。---Carus,Paul
 
问题是数学的心脏——P.R.哈尔莫斯
 
哪里有数,哪里就有美!——普洛克拉斯
 
逻辑是不可战胜的,因为要反对逻辑还得要使用逻辑。——布特鲁
 
数学分系统自然界本身同样的广阔————傅立叶
 
逻辑可以等待,因为它是永恒————亥维赛
 
一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。 ——马克思
  
 
数学是无穷的科学。——赫尔曼·外尔
 
历史使人聪明,诗歌使人机智,数学使人精细。——培根
 
一个国家的科学水平可以用它消耗的数学来度量。——拉奥
 
没有哪门学科能比数学更为清晰地阐明自然界的和谐性。——卡罗斯
 
数学是规律和理论的裁判和主宰者。——本杰明 
 
中国名言
 
迟序之数,非出神怪,有形可检,有数可推。——祖冲之(429-500)
 
事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。——刘徽
 
数学是最宝贵的研究精神之一。——华罗庚
 
新的数学方法和概念,常常比解决数学问题本身更重要。——华罗庚
 
宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。——华罗庚
 
数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。——陈省身
 
科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。——陈省身
 
我们欣赏数学,我们需要数学。——陈省身
 
一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。——陈省身
 现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量。——邱成桐

7. 有关数学的资料

100dm=10m 30*30=900

有关数学的资料

8. 数学方面资料

黄金分割点
黄金分割点是由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。他认为所黄金分割(4张)谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波那契数列1,1,2,3,5,8,13,21,。..后二数之比2/3,3/5,5/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数学家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛:最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代由华罗庚提倡在中国推广。