新能源汽车绝不认输,锂电池燃料电池甲醇制氢,产生新突破

2024-04-28 06:12

1. 新能源汽车绝不认输,锂电池燃料电池甲醇制氢,产生新突破

冬天是一个比较冷的季节,很多人都穿的非常厚,为的就是能够保暖。而在汽车市场上,其实也有同样的忧愁,汽车也是非常怕冷的,。冬天,很多车有着续航,低温,充电时间方面的劣势,尤其是一些出租车司机还有新能源汽车司机,对于这方面的吐槽是非常多的。其实每一年都会有类似的吐槽抱怨,无非就是对于这三方面的不满意。可以看到,虽然技术在不断进步,但是这些问题还是没有从根本上解决,很多人对此比较担忧。
而对于这些问题,很多国内外车企是没有放弃的,尤其是在锂电池基础上方案频繁提出,让我们看到了用心。比如说加大电池包,优化热管理,热泵空调,提高能量的密度,还有增强器及汽油柴油的供暖系统,这些技术一直在不断改进和发掘。
除了氢燃料汽车热度很高之外,甲醇重整制氢技术,以及以爱驰和吉利为代表的甲醛燃料也是非常有热度的,逐渐走进了大家的视线里。随着一些技术路线的综合运用,新能源汽车也是不断在调整自我突破自我。
大家应该发现了,在过去的时间里,新疆的主力军就是锂电池的充电汽车,因为它非常的环保,并且在政策方面也是比较给力的,所以说销量一直是上升的。但是在国内制造车还有特斯拉的影响之下,传统汽车厂商也开始改变自己,纷纷加入这个战队。其实锂电池不仅是有优势,也是有明显劣势的。它的劣势就是充电时间长,不耐低温并且续航很短,这一点让很多人非常担忧。
所以说为了弥补这些劣势,采取的手段也是非常多的,不仅是增大了电池包,还努力提高电池能量密度,因而很多续航的产品也是不断产生。
由此氢燃料电池也是出现在了大家面前,这样完全能够弥补锂电池的缺点。其实氢燃料电池就和小型的发动机差不多,能够产生电促进电机。而且我们发现加满氢气的时间是非常短的,可能只有三五分钟,这样既不耽误时间又很方便,续航的水平也是比较高的,完全可以跟燃油车水平相比,另外它非常的环保节能,符合现在很多人的理念。
如今,在市场上也是产生了更多产品,比如说这是NEXO,是韩国现代的氢燃料电池汽车。加一次氢气就能够达到700~800千米。比较值得一提的是,在11月的时候,江苏无锡也是设立了一个氢燃料的电池中心,表面上看这个工程是比较巨大的,可以弥补一些缺点,但是其实也是有很多劣势的。因为它成本非常的高,并且储存和运输的难度也是比较大的,所以不适用于家用短途出行,如果是一些长途运输的话还可以,所以说要想让它完全取代锂电池是根本不可能的。
没想到甲醇制氢系统也是做了调整,直接在车上用甲醛,这样就会产生氢气,从而提供给燃料电池,这样就会把运输还有集中秩序的环节收取,既能弥补缺点又能保留优点。
但是和其它的新能源一样,这个路线并不是万能的。如果未来能够根据不同场景跟需求进行多方配合的话,新能源的作用会非常的大,这样的话能让人们在安全出行的同时,还能保持环保节能,真的是何乐而不为呢。不得不说,新能源汽车的潜力,真的是超乎我们的想象。未来相信新能源汽车会越来越多,逐渐成为汽车市场的一大主力。
"
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

新能源汽车绝不认输,锂电池燃料电池甲醇制氢,产生新突破

2. 燃料电池概念逆势走强,锂电池汽车行业已经前途渺茫了吗?

现在的燃料电池概念逆势走强,对于锂电池汽车行业来说,影响是比较大的,前途发展处于渺茫的状态当中。

可以发现现在的电池发展有所改变跟传统的电池有所不同,现在的燃料电池概念有着风景独好的趋势,你不仅能够保护环境,还能够降低成本,更是一种环保的能源。近几年大家都能够看到一些目标的改变,有碳综合和探达峰,导致新能源汽车出现了一路高歌的状况,跟传统的锂电池相比,这样的电池能够为纯电动汽车提供更好的动力,而轻能源汽车存在感也在变高,近日的氢能源汽车也站在了上方口的情况之下。

主要是因为现在的新能源发展受到政策的支持才有了刺激,在国内也会有相关部门要求支持这样的发展潜力,去挖掘更多的市场潜力,也能够支持新能源汽车能够快速的发展。在2021年底的时候,工信部就发出了一些信息,其中就涉及68款不同燃料的电池汽车,而汽车制造商也发出相关的信息,现在的全美汽车销售量比率是比较高的,能够达到50%要求是电动汽车。其中氢燃料电池汽车,还有电动汽车以及插电式混合汽车都会有所变化,而美国政府也希望能够有无排放的汽车,其中就包括氢燃料这样的电池汽车受到市场的欢迎。

现在的促进难题也出现了松动的状况,可以发现有所改变,有一种高密度的固态方式去能够缓解这种问题就能够将储氢材料的相关问题解决掉,在运输环节也会更加方便和安全。当这一系列的问题解决之后,这种新能源在未来发展的趋势会越来越好,而锂电池发展的趋势可能会更渺茫,相关产业必须有所变化,找到革新之处才能够保持发展的动力。

3. 燃料电池的现状

 在中国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。“八五”期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入"九五"科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。在中国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,1996年和1998年两次在香山科学会议上对中国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年中国加强了在PEMFC方面的研究力度。 2000年大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,2001年将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华在EVS16届大会上宣布,中国将在2000年装出首台燃料电池电动车。此前参与燃料电池研究的有关概况如下:1:PEMFC的研究状况中国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制已制造出100WPEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。 中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达0.35W/cm2。复旦大学在90年代初开始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制备和电极制备工艺。厦门大学与香港大学和美国的CaseWesternReserve大学合作开展了直接甲醇PEMFC的研究。1994年,上海大学与北京石油大学合作研究PEMFC(“八五”攻关项目),主要研究催化剂、电极、电极膜集合体的制备工艺。北京理工大学于1995年在兵器工业部资助下开始了PEMFC的研究,单体电池的电流密度为150mA/cm2。中国科学院工程热物理研究所于1994年开始研究PEMFC,主营使用计算传热和计算流体力学方法对各种供气、增湿、排热和排水方案进行比较,提出改进的传热和传质方案。天津电源研究所1997年开始PEMFC的研究,拟从国外引进1.5kW的电池,在解析吸收国外先进技术的基础上开展研究。1995年北京富原公司与加拿大新能源公司合作进行PEMFC的研制与开发,5kW的PEMFC样机现已研制成功并开始接受订货。2:MCFC的研究简况在中国开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。3:SOFC的研究简况最早开展SOFC研究的是中国科学院上海硅酸盐研究所他们在1971年就开展了SOFC的研究,主要侧重于SOFC电极材料和电解质材料的研究。80年代在国家自然科学基金会的资助下又开始了SOFC的研究,系统研究了流延法制备氧化锆膜材料、阴极和阳极材料、单体SOFC结构等,已初步掌握了湿化学法制备稳定的氧化锆纳米粉和致密陶瓷的技术。吉林大学于1989年在吉林省青年科学基金资助下开始对SOFC的电解质、阳极和阴极材料等进行研究组装成单体电池,通过了吉林省科委的鉴定。1995年获吉林省计委和国家计委450万元人民币的资助,先后研究了电极、电解质、密封和联结材料等,单体电池开路电压达1.18V,电流密度400mA/cm2,4个单体电池串联的电池组能使收音机和录音机正常工作。1991年中国科学院化工冶金研究所在中国科学院资助下开展了SOFC的研究,从研制材料着手制成了管式和平板式的单体电池,功率密度达0.09W/cm2~0.12W/cm2,电流密度为150mA/cm2~180mA/cm2,工作电压为0.60V~0.65V。1994年该所从俄罗斯科学院乌拉尔分院电化学研究所引进了20W~30W块状叠层式SOFC电池组,电池寿命达1200h。他们在分析俄罗斯叠层式结构、美国Westinghouse的管式结构和德国Siemens板式结构的基础上,设计了六面体式新型结构,该结构吸收了管式不密封的优点,电池间组合采用金属毡柔性联结,并可用常规陶瓷制备工艺制作。华南理工大学于1992年在国家自然科学基金会、广东省自然科学基金、汕头大学李嘉诚科研基金、广东佛山基金共一百多万元的资助下开始了SOFC的研究,组装的管状单体电池,用甲烷直接作燃料,最大输出功率为4mW/cm2,电流密度为17mA/cm2,连续运转140h,电池性能无明显衰减。 发达国家都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。值得注意的是这种重要的新型发电方式可以大大降低空气污染及解决电力供应、电网调峰问题,2MW、4.5MW、11MW成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,它已是能源、电力行业不得不正视的课题。磷酸型燃料电池(PAFC)受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了1000kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。 富士电机公司是日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。下表所示为富士电机公司已交货的发电装置运行情况,到1998年止有的已超过了目标寿命4万小时。东芝公司从70年代后半期开始,以分散型燃料电池为中心进行开发以后,将分散电源用11MW机以及200kW机形成了系列化。11MW机是世界上最大的燃料电池发电设备,从1989年开始在东京电力公司五井火电站内建造,1991年3月初发电成功后,直到1996年5月进行了5年多现场试验,累计运行时间超过2万小时,在额定运行情况下实现发电效率43.6%。在小型现场燃料电池领域,1990年东芝和美国IFC公司为使现场用燃料电池商业化,成立了ONSI公司,以后开始向全世界销售现场型200kW设备"PC25"系列。PC25系列燃料电池从1991年末运行,到1998年4月,共向世界销售了174台。其中安装在美国某公司的一台机和安装在日本大阪梅田中心的大阪煤气公司2号机,累计运行时间相继突破了4万小时。从燃料电池的寿命和可靠性方面来看,累计运行时间4万h是燃料电池的长远目标。东芝ONSI已完成了正式商用机PC25C型的开发,早已投放市场。PC25C型作为21世纪新能源先锋获得日本通商产业大奖。从燃料电池商业化出发,该设备被评价为具有高先进性、可靠性以及优越的环境性设备。它的制造成本是$3000/kW,将推出的商业化PC25D型设备成本会降至$1500/kW,体积比PC25C型减少1/4,质量仅为14t。2001年,在中国就将迎来第一座PC25C型燃料电池电站,它主要由日本的MITI(NEDO)资助的,这将是我国第一座燃料电池发电站。质子交换膜燃料电池(PEMFC)著名的加拿大Ballard公司在PEMFC技术上全球领先,它的应用领域从交通工具到固定电站,其子公司BallardGenerationSystem被认为在开发、生产和市场化零排放质子交换膜燃料电池上处于世界领先地位。BallardGenerationSystem最初产品是250kW燃料电池电站,其基本构件是Ballard燃料电池,利用氢气(由甲醇、天然气或石油得到)、氧气(由空气得到)不燃烧地发电。Ballard公司正和世界许多著名公司合作以使BallardFuelCell商业化。BallardFuelCell已经用于固定发电厂:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同组建了BallardGenerationSystem,共同开发千瓦级以下的燃料电池发电厂。经过5年的开发,第一座250kW发电厂于1997年8月成功发电,1999年9月送至IndianaCinergy,经过周密测试、评估,并提高了设计的性能、降低了成本,这导致了第二座电厂的诞生,它安装在柏林,250kW输出功率,也是在欧洲的第一次测试。很快Ballard公司的第三座250kW电厂也在2000年9月安装在瑞士进行现场测试,紧接着,在2000年10月通过它的伙伴EBARABallard将第四座燃料电池电厂安装在日本的NTT公司,向亚洲开拓了市场。在不同地区进行的测试将大大促进燃料电池电站的商业化。第一个早期商业化电厂将在2001年底面市。下图是安装在美国Cinergy的Ballard燃料电池装置,正在测试。图是安装在柏林的250kW PEMFC燃料电池电站:在美国,PlugPower公司是最大的质子交换膜燃料电池开发公司,他们的目标是开发、制造适合于居民和汽车用经济型燃料电池系统。1997年,PlugPower模块第一个成功地将汽油转变为电力。PlugPower公司开发出它的专利产品PlugPower7000居民家用分散型电源系统。商业产品在2001年初推出。家用燃料电池的推出将使核电站、燃气发电站面临挑战,为了推广这种产品,1999年2月,PlugPower公司和GEMicroGen成立了合资公司,产品改称GEHomeGen7000,由GEMicroGen公司负责全球推广。此产品将提供7kW的持续电力。GE/Plug公司宣称其2001年初售价为$1500/kW。他们预计5年后,大量生产的燃料电池售价将降至$500/kW。假设有20万户家庭各安装一个7kW的家用燃料电池发电装置,其总和将接近一个核电机组的容量,这种分散型发电系统可用于尖峰用电的供给,又因分散式系统设计增加了电力的稳定性,即使少数出现了故障,但整个发电系统依然能正常运转。 在Ballard公司的带动下,许多汽车制造商参加了燃料电池车辆的研制,例如:Chrysler(克莱斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大众)和Volvo(富豪)等,它们许多正在使用的燃料电池都是由Ballard公司生产的,同时,它们也将大量的资金投入到燃料电池的研制当中,克莱斯勒公司给Ballard公司注入4亿5千万加元用于开发燃料电池汽车,大大的促进了PEMFC的发展。1997年,Toyota公司就制成了一辆RAV4型带有甲醇重整器的跑车,它由一个25kW的燃料电池和辅助干电池一起提供了全部50kW的能量,最高时速可以达到125km/h,行程可达500km。这些大的汽车公司均有燃料电池开发计划,虽然燃料电池汽车商业化的时机还未成熟,但几家公司已确定了开始批量生产的时间表,Daimler-Benz公司宣布,到2004年将年产40000辆燃料电池汽车。因而未来十年,极有可能达到100000辆燃料电池汽车。熔融碳酸盐燃料电池(MCFC)50年代初,熔融碳酸盐燃料电池(MCFC)由于其可以作为大规模民用发电装置的前景而引起了世界范围的重视。在这之后,MCFC发展的非常快,它在电池材料、工艺、结构等方面都得到了很大的改进,但电池的工作寿命并不理想。到了80年代,它已被作为第二代燃料电池,而成为实现兆瓦级商品化燃料电池电站的主要研究目标,研制速度日益加快。MCFC的主要研制者集中在美国、日本和西欧等国家。预计2002年将商品化生产。美国能源部(DOE)2000年已拨给固定式燃料电池电站的研究费用4420万美元,而其中的2/3将用于MCFC的开发,1/3用于SOFC的开发。美国的MCFC技术开发一直主要由两大公司承担,ERC(EnergyResearchCorporation)(现为FuelCellEnergyInc.)和M-CPower公司。他们通过不同的方法建造MCFC堆。两家公司都到了现场示范阶段:ERC1996年已进行了一套设于加州圣克拉拉的2MW的MCFC电站的实证试验,正在寻找3MW装置试验的地点。ERC的MCFC燃料电池在电池内部进行无燃气的改质,而不需要单独设置的改质器。根据试验结果,ERC对电池进行了重新设计,将电池改成250kW单电池堆,而非原来的125kW堆,这样可将3MW的MCFC安装在0.1英亩的场地上,从而降低投资费用。ERC预计将以$1200/kW的设备费用提供3MW的装置。这与小型燃气涡轮发电装置设备费用$1000/kW接近。但小型燃气发电效率仅为30%,并且有废气排放和噪声问题。与此同时,美国M-CPower公司已在加州圣迭戈的海军航空站进行了250kW装置的试验,计划在同一地点试验改进75kW装置。M-CPower公司正在研制500kW模块,计划2002年开始生产。日本对MCFC的研究,自1981年"月光计划"时开始,1991年后转为重点,每年在燃料电池上的费用为12-15亿美元,1990年政府追加2亿美元,专门用于MCFC的研究。电池堆的功率1984年为1kW,1986年为10kW。日本同时研究内部转化和外部转化技术,1991年,30kW级间接内部转化MCFC试运转。1992年50-100kW级试运转。1994年,分别由日立和石川岛播磨重工完成两个100kW、电极面积1m2,加压外重整MCFC。另外由中部电力公司制造的1MW外重整MCFC正在川越火力发电厂安装,预计以天然气为燃料时,热电效率大于45%,运行寿命大于5000h。由三菱电机与美国ERC合作研制的内重整30kWMCFC已运行了10000h。三洋公司也研制了30kW内重整MCFC。石川岛播磨重工有世界上最大面积的MCFC燃料电池堆,试验寿命已达13000h。日本为了促进MCFC的开发研究,于1987年成立了MCFC研究协会,负责燃料电池堆运转、电厂外围设备和系统技术等方面的研究,它已联合了14个单位成为日本研究开发主力。欧洲早在1989年就制定了1个Joule计划,目标是建立环境污染小、可分散安装、功率为200MW的"第二代"电厂,包括MCFC、SOFC和PEMFC三种类型,它将任务分配到各国。进行MCFC研究的主要有荷兰、意大利、德国、丹麦和西班牙。荷兰对MCFC的研究从1986年已经开始,1989年已研制了1kW级电池堆,1992年对10kW级外部转化型与1kW级内部转化型电池堆进行试验,1995年对煤制气与天然气为燃料的2个250kW系统进行试运转。意大利于1986年开始执行MCFC国家研究计划,1992-1994年研制50-100kW电池堆,意大利Ansodo与IFC签定了有关MCFC技术的协议,已安装一套单电池(面积1m2)自动化生产设备,年生产能力为2-3MW,可扩大到6-9MW。德国MBB公司于1992年完成10kW级外部转化技术的研究开发,在ERC协助下,于1992年-1994年进行了100kW级与250kW级电池堆的制造与运转试验。现在MBB公司拥有世界上最大的280kW电池组体。资料表明,MCFC与其他燃料电池比有着独特优点:a.发电效率高比PAFC的发电效率还高;b.不需要昂贵的白金作催化剂,制造成本低;c.可以用CO作燃料;d.由于MCFC工作温度600-1000℃,排出的气体可用来取暖,也可与汽轮机联合发电。若热电联产,效率可提高到80%;e.中小规模经济性与几种发电方式比较,当负载指数大于45%时,MCFC发电系统成本最低。与PAFC相比,虽然MCFC起始投资高,但PAFC的燃料费远比MCFC高。当发电系统为中小规模分散型时,MCFC的经济性更为突出;f.MCFC的结构比PAFC简单。固体氧化物燃料电池(SOFC)SOFC由用氧化钇稳定氧化锆(YSZ)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被氧化,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。SOFC的特点如下:由于是高温动作(600-1000℃),通过设置底面循环,可以获得超过60%效率的高效发电。由于氧离子是在电解质中移动,所以也可以用CO、煤气化的气体作为燃料。由于电池本体的构成材料全部是固体,所以没有电解质的蒸发、流淌。另外,燃料极空气极也没有腐蚀。l动作温度高,可以进行甲烷等内部改质。与其他燃料电池比,发电系统简单,可以期望从容量比较小的设备发展到大规模设备,具有广泛用途。在固定电站领域,SOFC明显比PEMFC有优势。SOFC很少需要对燃料处理,内部重整、内部热集成、内部集合管使系统设计更为简单,而且,SOFC与燃气轮机及其他设备也很容易进行高效热电联产。下图为西门子-西屋公司开发出的世界第一台SOFC和燃气轮机混合发电站,它于2000年5月安装在美国加州大学,功率220kW,发电效率58%。未来的SOFC/燃气轮机发电效率将达到60-70%。被称为第三代燃料电池的SOFC正在积极的研制和开发中,它是正在兴起的新型发电方式之一。美国是世界上最早研究SOFC的国家,而美国的西屋电气公司所起的作用尤为重要,现已成为在SOFC研究方面最有权威的机构。 早在1962年,西屋电气公司就以甲烷为燃料,在SOFC试验装置上获得电流,并指出烃类燃料在SOFC内必须完成燃料的催化转化与电化学反应两个基础过程,为SOFC的发展奠定了基础。此后10年间,该公司与OCR机构协作,连接400个小圆筒型ZrO2-CaO电解质,试制100W电池,但此形式不便供大规模发电装置应用。80年代后,为了开辟新能源,缓解石油资源紧缺而带来的能源危机,SOFC研究得到蓬勃发展。西屋电气公司将电化学气相沉积技术应用于SOFC的电解质及电极薄膜制备过程,使电解质层厚度减至微米级,电池性能得到明显提高,从而揭开了SOFC的研究崭新的一页。80年代中后期,它开始向研究大功率SOFC电池堆发展。1986年,400W管式SOFC电池组在田纳西州运行成功。燃料电池另外,美国的其它一些部门在SOFC方面也有一定的实力。位于匹兹堡的PPMF是SOFC技术商业化的重要生产基地,这里拥有完整的SOFC电池构件加工、电池装配和电池质量检测等设备,是目前世界上规模最大的SOFC技术研究开发中心。1990年,该中心为美国DOE制造了20kW级SOFC装置,该装置采用管道煤气为燃料,已连续运行了1700多小时。与此同时,该中心还为日本东京和大阪煤气公司、关西电力公司提供了两套25kW级SOFC试验装置,其中一套为热电联产装置。另外美国阿尔贡国家实验室也研究开发了叠层波纹板式SOFC电池堆,并开发出适合于这种结构材料成型的浇注法和压延法。使电池能量密度得到显著提高,是比较有前途的SOFC结构。 在日本,SOFC研究是“月光计划”的一部分。早在1972年,电子综合技术研究所就开始研究SOFC技术,后来加入"月光计划"研究与开发行列,1986年研究出500W圆管式SOFC电池堆,并组成1.2kW发电装置。东京电力公司与三菱重工从1986年12月开始研制圆管式SOFC装置,获得了输出功率为35W的单电池,当电流密度为200mA/cm2时,电池电压为0.78V,燃料利用率达到58%。1987年7月,电源开发公司与这两家公司合作,开发出1kW圆管式SOFC电池堆,并连续试运行达1000h,最大输出功率为1.3kW。关西电力公司、东京煤气公司与大阪煤气公司等机构则从美国西屋电气公司引进3kW及2.5kW圆管式SOFC电池堆进行试验,取得了满意的结果。从1989年起,东京煤气公司还着手开发大面积平板式SOFC装置,1992年6月完成了100W平板式SOFC装置,该电池的有效面积达400cm2。现Fuji与Sanyo公司开发的平板式SOFC功率已达到千瓦级。另外,中部电力公司与三菱重工合作,从1990年起对叠层波纹板式SOFC系统进行研究和综合评价,研制出406W试验装置,该装置的单电池有效面积达到131cm2。在欧洲早在70年代,联邦德国海德堡中央研究所就研究出圆管式或半圆管式电解质结构的SOFC发电装置,单电池运行性能良好。80年代后期,在美国和日本的影响下,欧共体积极推动欧洲的SOFC的商业化发展。德国的Siemens、DomierGmbH及ABB研究公司致力于开发千瓦级平板式SOFC发电装置。Siemens公司还与荷兰能源中心(ECN)合作开发开板式SOFC单电池,有效电极面积为67cm2。ABB研究公司于1993年研制出改良型平板式千瓦级SOFC发电装置,这种电池为金属双极性结构,在800℃下进行了实验,效果良好。现正考虑将其制成25~100kW级SOFC发电系统,供家庭或商业应用。

燃料电池的现状

4. 燃料电池现状的介绍

 发达国家都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。值得注意的是这种重要的新型发电方式可以大大降低空气污染及解决电力供应、电网调峰问题,2MW、4.5MW、11MW成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,它已是能源、电力行业不得不正视的课题。  磷酸型燃料电池(PAFC)  受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了1000kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。 富士电机公司是日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。下表所示为富士电机公司已交货的发电装置运行情况,到1998年止有的已超过了目标寿命4万小时。  东芝公司从70年代后半期开始,以分散型燃料电池为中心进行开发以后,将分散电源用11MW机以及200kW机形成了系列化。11MW机是世界上最大的燃料电池发电设备,从1989年开始在东京电力公司五井火电站内建造,1991年3月初发电成功后,直到1996年5月进行了5年多现场试验,累计运行时间超过2万小时,在额定运行情况下实现发电效率43.6%。在小型现场燃料电池领域,1990年东芝和美国IFC公司为使现场用燃料电池商业化,成立了ONSI公司,以后开始向全世界销售现场型200kW设备"PC25"系列。PC25系列燃料电池从1991年末运行,到1998年4月,共向世界销售了174台。其中安装在美国某公司的一台机和安装在日本大阪梅田中心的大阪煤气公司2号机,累计运行时间相继突破了4万小时。从燃料电池的寿命和可靠性方面来看,累计运行时间4万h是燃料电池的长远目标。东芝ONSI已完成了正式商用机PC25C型的开发,早已投放市场。PC25C型作为21世纪新能源先锋获得日本通商产业大奖。从燃料电池商业化出发,该设备被评价为具有高先进性、可靠性以及优越的环境性设备。它的制造成本是$3000/kW,将推出的商业化PC25D型设备成本会降至$1500/kW,体积比PC25C型减少1/4,质量仅为14t。2001年,在中国就将迎来第一座PC25C型燃料电池电站,它主要由日本的MITI(NEDO)资助的,这将是我国第一座燃料电池发电站。  质子交换膜燃料电池(PEMFC)  著名的加拿大Ballard公司在PEMFC技术上全球领先,它的应用领域从交通工具到固定电站,其子公司BallardGenerationSystem被认为在开发、生产和市场化零排放质子交换膜燃料电池上处于世界领先地位。BallardGenerationSystem最初产品是250kW燃料电池电站,其基本构件是Ballard燃料电池,利用氢气(由甲醇、天然气或石油得到)、氧气(由空气得到)不燃烧地发电。Ballard公司正和世界许多著名公司合作以使BallardFuelCell商业化。BallardFuelCell已经用于固定发电厂:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同组建了BallardGenerationSystem,共同开发千瓦级以下的燃料电池发电厂。经过5年的开发,第一座250kW发电厂于1997年8月成功发电,1999年9月送至IndianaCinergy,经过周密测试、评估,并提高了设计的性能、降低了成本,这导致了第二座电厂的诞生,它安装在柏林,250kW输出功率,也是在欧洲的第一次测试。很快Ballard公司的第三座250kW电厂也在2000年9月安装在瑞士进行现场测试,紧接着,在2000年10月通过它的伙伴EBARABallard将第四座燃料电池电厂安装在日本的NTT公司,向亚洲开拓了市场。在不同地区进行的测试将大大促进燃料电池电站的商业化。第一个早期商业化电厂将在2001年底面市。下图是安装在美国Cinergy的Ballard燃料电池装置,正在测试。  图是安装在柏林的250kW PEMFC燃料电池电站:  在美国,PlugPower公司是最大的质子交换膜燃料电池开发公司,他们的目标是开发、制造适合于居民和汽车用经济型燃料电池系统。1997年,PlugPower模块第一个成功地将汽油转变为电力。PlugPower公司开发出它的专利产品PlugPower7000居民家用分散型电源系统。商业产品在2001年初推出。家用燃料电池的推出将使核电站、燃气发电站面临挑战,为了推广这种产品,1999年2月,PlugPower公司和GEMicroGen成立了合资公司,产品改称GEHomeGen7000,由GEMicroGen公司负责全球推广。此产品将提供7kW的持续电力。GE/Plug公司宣称其2001年初售价为$1500/kW。他们预计5年后,大量生产的燃料电池售价将降至$500/kW。假设有20万户家庭各安装一个7kW的家用燃料电池发电装置,其总和将接近一个核电机组的容量,这种分散型发电系统可用于尖峰用电的供给,又因分散式系统设计增加了电力的稳定性,即使少数出现了故障,但整个发电系统依然能正常运转。 在Ballard公司的带动下,许多汽车制造商参加了燃料电池车辆的研制,例如:Chrysler(克莱斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大众)和Volvo(富豪)等,它们许多正在使用的燃料电池都是由Ballard公司生产的,同时,它们也将大量的资金投入到燃料电池的研制当中,克莱斯勒公司给Ballard公司注入4亿5千万加元用于开发燃料电池汽车,大大的促进了PEMFC的发展。1997年,Toyota公司就制成了一辆RAV4型带有甲醇重整器的跑车,它由一个25kW的燃料电池和辅助干电池一起提供了全部50kW的能量,最高时速可以达到125km/h,行程可达500km。这些大的汽车公司均有燃料电池开发计划,虽然燃料电池汽车商业化的时机还未成熟,但几家公司已确定了开始批量生产的时间表,Daimler-Benz公司宣布,到2004年将年产40000辆燃料电池汽车。因而未来十年,极有可能达到100000辆燃料电池汽车。  熔融碳酸盐燃料电池(MCFC)  50年代初,熔融碳酸盐燃料电池(MCFC)由于其可以作为大规模民用发电装置的前景而引起了世界范围的重视。在这之后,MCFC发展的非常快,它在电池材料、工艺、结构等方面都得到了很大的改进,但电池的工作寿命并不理想。到了80年代,它已被作为第二代燃料电池,而成为实现兆瓦级商品化燃料电池电站的主要研究目标,研制速度日益加快。MCFC的主要研制者集中在美国、日本和西欧等国家。预计2002年将商品化生产。  美国能源部(DOE)2000年已拨给固定式燃料电池电站的研究费用4420万美元,而其中的2/3将用于MCFC的开发,1/3用于SOFC的开发。美国的MCFC技术开发一直主要由两大公司承担,ERC(EnergyResearchCorporation)(现为FuelCellEnergyInc.)和M-CPower公司。他们通过不同的方法建造MCFC堆。两家公司都到了现场示范阶段:ERC1996年已进行了一套设于加州圣克拉拉的2MW的MCFC电站的实证试验,正在寻找3MW装置试验的地点。ERC的MCFC燃料电池在电池内部进行无燃气的改质,而不需要单独设置的改质器。根据试验结果,ERC对电池进行了重新设计,将电池改成250kW单电池堆,而非原来的125kW堆,这样可将3MW的MCFC安装在0.1英亩的场地上,从而降低投资费用。ERC预计将以$1200/kW的设备费用提供3MW的装置。这与小型燃气涡轮发电装置设备费用$1000/kW接近。但小型燃气发电效率仅为30%,并且有废气排放和噪声问题。与此同时,美国M-CPower公司已在加州圣迭戈的海军航空站进行了250kW装置的试验,计划在同一地点试验改进75kW装置。M-CPower公司正在研制500kW模块,计划2002年开始生产。  日本对MCFC的研究,自1981年"月光计划"时开始,1991年后转为重点,每年在燃料电池上的费用为12-15亿美元,1990年政府追加2亿美元,专门用于MCFC的研究。电池堆的功率1984年为1kW,1986年为10kW。日本同时研究内部转化和外部转化技术,1991年,30kW级间接内部转化MCFC试运转。1992年50-100kW级试运转。1994年,分别由日立和石川岛播磨重工完成两个100kW、电极面积1m2,加压外重整MCFC。另外由中部电力公司制造的1MW外重整MCFC正在川越火力发电厂安装,预计以天然气为燃料时,热电效率大于45%,运行寿命大于5000h。由三菱电机与美国ERC合作研制的内重整30kWMCFC已运行了10000h。三洋公司也研制了30kW内重整MCFC。石川岛播磨重工有世界上最大面积的MCFC燃料电池堆,试验寿命已达13000h。日本为了促进MCFC的开发研究,于1987年成立了MCFC研究协会,负责燃料电池堆运转、电厂外围设备和系统技术等方面的研究,它已联合了14个单位成为日本研究开发主力。  欧洲早在1989年就制定了1个Joule计划,目标是建立环境污染小、可分散安装、功率为200MW的"第二代"电厂,包括MCFC、SOFC和PEMFC三种类型,它将任务分配到各国。进行MCFC研究的主要有荷兰、意大利、德国、丹麦和西班牙。荷兰对MCFC的研究从1986年已经开始,1989年已研制了1kW级电池堆,1992年对10kW级外部转化型与1kW级内部转化型电池堆进行试验,1995年对煤制气与天然气为燃料的2个250kW系统进行试运转。意大利于1986年开始执行MCFC国家研究计划,1992-1994年研制50-100kW电池堆,意大利Ansodo与IFC签定了有关MCFC技术的协议,已安装一套单电池(面积1m2)自动化生产设备,年生产能力为2-3MW,可扩大到6-9MW。德国MBB公司于1992年完成10kW级外部转化技术的研究开发,在ERC协助下,于1992年-1994年进行了100kW级与250kW级电池堆的制造与运转试验。现在MBB公司拥有世界上最大的280kW电池组体。  资料表明,MCFC与其他燃料电池比有着独特优点:  a.发电效率高比PAFC的发电效率还高;  b.不需要昂贵的白金作催化剂,制造成本低;  c.可以用CO作燃料;  d.由于MCFC工作温度600-1000℃,排出的气体可用来取暖,也可与汽轮机联合发电。若热电联产,效率可提高到80%;  e.中小规模经济性与几种发电方式比较,当负载指数大于45%时,MCFC发电系统成本最低。与PAFC相比,虽然MCFC起始投资高,但PAFC的燃料费远比MCFC高。当发电系统为中小规模分散型时,MCFC的经济性更为突出;  f.MCFC的结构比PAFC简单。  固体氧化物燃料电池(SOFC)  SOFC由用氧化钇稳定氧化锆(YSZ)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被氧化,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。  SOFC的特点如下:  由于是高温动作(600-1000℃),通过设置底面循环,可以获得超过60%效率的高效发电。  由于氧离子是在电解质中移动,所以也可以用CO、煤气化的气体作为燃料。  由于电池本体的构成材料全部是固体,所以没有电解质的蒸发、流淌。另外,燃料极空气极也没有腐蚀。l动作温度高,可以进行甲烷等内部改质。  与其他燃料电池比,发电系统简单,可以期望从容量比较小的设备发展到大规模设备,具有广泛用途。  在固定电站领域,SOFC明显比PEMFC有优势。SOFC很少需要对燃料处理,内部重整、内部热集成、内部集合管使系统设计更为简单,而且,SOFC与燃气轮机及其他设备也很容易进行高效热电联产。下图为西门子-西屋公司开发出的世界第一台SOFC和燃气轮机混合发电站,它于2000年5月安装在美国加州大学,功率220kW,发电效率58%。未来的SOFC/燃气轮机发电效率将达到60-70%。  被称为第三代燃料电池的SOFC正在积极的研制和开发中,它是正在兴起的新型发电方式之一。美国是世界上最早研究SOFC的国家,而美国的西屋电气公司所起的作用尤为重要,现已成为在SOFC研究方面最有权威的机构。 早在1962年,西屋电气公司就以甲烷为燃料,在SOFC试验装置上获得电流,并指出烃类燃料在SOFC内必须完成燃料的催化转化与电化学反应两个基础过程,为SOFC的发展奠定了基础。此后10年间,该公司与OCR机构协作,连接400个小圆筒型ZrO2-CaO电解质,试制100W电池,但此形式不便供大规模发电装置应用。80年代后,为了开辟新能源,缓解石油资源紧缺而带来的能源危机,SOFC研究得到蓬勃发展。西屋电气公司将电化学气相沉积技术应用于SOFC的电解质及电极薄膜制备过程,使电解质层厚度减至微米级,电池性能得到明显提高,从而揭开了SOFC的研究崭新的一页。80年代中后期,它开始向研究大功率SOFC电池堆发展。1986年,400W管式SOFC电池组在田纳西州运行成功。  燃料电池  另外,美国的其它一些部门在SOFC方面也有一定的实力。位于匹兹堡的PPMF是SOFC技术商业化的重要生产基地,这里拥有完整的SOFC电池构件加工、电池装配和电池质量检测等设备,是目前世界上规模最大的SOFC技术研究开发中心。1990年,该中心为美国DOE制造了20kW级SOFC装置,该装置采用管道煤气为燃料,已连续运行了1700多小时。与此同时,该中心还为日本东京和大阪煤气公司、关西电力公司提供了两套25kW级SOFC试验装置,其中一套为热电联产装置。另外美国阿尔贡国家实验室也研究开发了叠层波纹板式SOFC电池堆,并开发出适合于这种结构材料成型的浇注法和压延法。使电池能量密度得到显著提高,是比较有前途的SOFC结构。 在日本,SOFC研究是“月光计划”的一部分。早在1972年,电子综合技术研究所就开始研究SOFC技术,后来加入"月光计划"研究与开发行列,1986年研究出500W圆管式SOFC电池堆,并组成1.2kW发电装置。东京电力公司与三菱重工从1986年12月开始研制圆管式SOFC装置,获得了输出功率为35W的单电池,当电流密度为200mA/cm2时,电池电压为0.78V,燃料利用率达到58%。1987年7月,电源开发公司与这两家公司合作,开发出1kW圆管式SOFC电池堆,并连续试运行达1000h,最大输出功率为1.3kW。关西电力公司、东京煤气公司与大阪煤气公司等机构则从美国西屋电气公司引进3kW及2.5kW圆管式SOFC电池堆进行试验,取得了满意的结果。从1989年起,东京煤气公司还着手开发大面积平板式SOFC装置,1992年6月完成了100W平板式SOFC装置,该电池的有效面积达400cm2。现Fuji与Sanyo公司开发的平板式SOFC功率已达到千瓦级。另外,中部电力公司与三菱重工合作,从1990年起对叠层波纹板式SOFC系统进行研究和综合评价,研制出406W试验装置,该装置的单电池有效面积达到131cm2。  在欧洲早在70年代,联邦德国海德堡中央研究所就研究出圆管式或半圆管式电解质结构的SOFC发电装置,单电池运行性能良好。80年代后期,在美国和日本的影响下,欧共体积极推动欧洲的SOFC的商业化发展。德国的Siemens、DomierGmbH及ABB研究公司致力于开发千瓦级平板式SOFC发电装置。Siemens公司还与荷兰能源中心(ECN)合作开发开板式SOFC单电池,有效电极面积为67cm2。ABB研究公司于1993年研制出改良型平板式千瓦级SOFC发电装置,这种电池为金属双极性结构,在800℃下进行了实验,效果良好。现正考虑将其制成25~100kW级SOFC发电系统,供家庭或商业应用。

5. 燃料电池的研究进展

科学家研发展动力燃料电池:替代铂进行催化韩国高丽大学的一个科学家组概述了一个用人尿内的碳原子制造廉价电力的计划。这些研究人员称,他们会用天然存在于人尿中的碳取代燃料电池内昂贵的铂。燃料电池是一项通过氢氧反应把化学能变成电能的很有发展前途的技术。 根据这项技术,把氢气送到燃料电池一侧、带有负电荷的阳极上,同时氧被送到燃料电池另一侧、带有正电荷的阴极上。在阳极上,一种通常是铂的催化剂把氢原子的电子分离出来,留下带正电荷的氢离子和自由电子。阳极和阴极之间的一张膜只允许氢离子通过。这意味着电子只有沿着外电路移动,继而产生电流。 科学家希望燃料电池将来有机会得到广泛应用,为汽车和住宅提供电力。问题是燃料电池内的催化剂过于昂贵,而且它的高成本现已抑制这项技术的商业发展。但通过用具有相似特性的碳代替铂,韩国研究人员认为他们可能大幅降低燃料电池的成本。 生物质燃料低温电池2014年2月9日,美国科学家开发出一种直接以生物质为原料的低温燃料电池。这种燃料电池只需借助太阳能或废热就能将稻草、锯末、藻类甚至有机肥料转化为电能,能量密度比基于纤维素的微生物燃料电池高出近100倍。这种技术,在室温下就能对生物质进行处理,对原材料的要求极低,几乎适用于所有生物质,如淀粉、纤维素、木质素,甚至柳枝稷、锯末、藻类以及禽类加工的废料都能被用来发电。如果缺乏上述原料,水溶性生物质或悬浮在液体中的有机材料也没有问题。该设备既可以在偏远地区以家庭为单位小规模使用,也可以在生物质原料丰富的城市大规模使用。实验显示,这种燃料电池的运行时间长达20小时,这表明POM催化剂能够再利用而无需进一步的处理。研究人员报告称,这种燃料电池的最大能量密度可达每平方厘米0.72毫瓦,比基于纤维素的微生物燃料电池高出近100倍,接近目前效能最高的微生物燃料电池。邓玉林认为,在对处理过程进行优化后应该还有5倍到10倍的提升空间,未来这种生物质燃料电池的性能甚至有望媲美甲醇燃料电池。 直接甲酸燃料电池科研人员通过向普通的碳黑中掺杂磷化镍(Ni2P)获得了一种简单廉价的复合载体,然后将钯负载在该复合载体上得到直接甲酸燃料电池用阳极电催化剂。据介绍,该类催化剂在酸性环境中的活性、寿命、抗中毒能力及长效工作稳定性方面均优于商业催化剂和其他已经报道的催化剂。其中,利用该体系中的Pd-Ni2P/C作为DFAFC催化剂时其功率密度高达550mW/cm2,较商业性能提高2.5倍,是目前所见文献报道的DFAFC的最高性能,相关研究成果发表于日前的《德国应用化学》上。

燃料电池的研究进展

6. 车企呼吁尽快打破燃料电池发展瓶颈

在政策的支持与推动下,全国各地正在大张旗鼓地推动燃料电池 汽车 产业发展。不过,各地的热火朝天依然掩盖不了产业发展过程中的诸多弊端。日前,中国 汽车 工业协会(以下简称“中汽协”)、中国 汽车 动力电池产业创新联盟和国家动力电池创新中心在北京联合举办的“关于推动氢燃料电池 汽车 商业化应用研讨会”上,就有不少企业提出,目前仍有多重阻力制约燃料电池 汽车 产业发展。
  
 -多重阻力待解决
    
 首先,发展燃料电池 汽车 ,需要解决氢气的属性问题,如果氢气仍然按照危化品管理,开展燃料电池 汽车 研发与生产将寸步难行,这也是当前行业普遍的诉求。
    
 第三,燃料电池 汽车 要想大规模发展,需要推广和示范,目前全国各地一哄而上,整个行业显然有过热嫌疑。不少企业人士强调,应该选一些既有产业基础,又有氢气资源的区域开展示范运行,从而带动我国燃料电池 汽车 产业发展。
  
 第四,燃料电池 汽车 技术标准要求不同于传统 汽车 ,但该领域的技术标准法规体系多年没有完善,这不利于整个产业 健康 发展。
  
 第五,燃料电池 汽车 目前有多种技术路线,而我国 汽车 企业实力有限,不可能每种路线都进行尝试。如果不同的企业分别研发不同的燃料电池 汽车 ,也不利于资源的有效利用。有业内人士希望行业协会牵头整合国内外优势整车企业和零部件企业成立燃料电池整车与核心零部件产业联盟,形成共同的目标,确定统一的技术路线,避免资源浪费和重复建设。
  
 最后,目前,燃料电池 汽车 还没有进入完全市场化阶段,需要政府给予一定的扶持,然而,有企业人士反映,燃料电池的补贴不够明朗化,对企业制定长远规划带来一定不利影响。
  
 -行业亟待协同突破发展难题
  
 发展燃料电 汽车 已上升为国家战略,我国有不少企业、高校和科研机构也纷纷加大了研发投入力度。但一个明显的特征是,科研力量分散,协同效应不强。
  
 “我国燃料电池 汽车 发展已进入导入期,整个产业以市场为导向。但在技术上离世界先进水平还有很大差距。亟须整合政、产、学、研各方力量,协同突破六大方面的技术瓶颈和行业难题。”上海重塑能源 科技 有限公司董事长林琦说。
  
 林琦介绍,在核心技术方面,需要攻克关键共性技术,提高产业竞争力;在规模制造方面,需要加强关键工艺、核心装备和智能化生产线研发集成;在能源互联方面,需要解决低成本制氢、高效率储氢、氢电油能源互联等行业共性问题;在智能平台方面,需要建立全生态体系全生命周期管理,提升安全性、可靠性和智能性;在标准法规方面,需要推动国内外相关标准制定,引领全球燃料电池技术发展;在专业人才方面,氢能与燃料电池专业人才严重匮乏,亟须加强培养、培训。
  
 事实上,为了让行业协同发展,各方也进行了多种尝试。如中汽协联合企业共同成立了国家动力电池创新中心燃料电池分中心。
  
 据了解,燃料电池分中心的定位是着力解决共性技术的研发,建立基础研究到产业化的连接,补强我国燃料电池创新链条的中游环节。具体包括聚集多元化、跨领域的创新资源;打通基础研究、应用开发、成果转化和产业化链条;突破新材料、新工艺的核心关键技术;研发世界领先的燃料电池系统。
  
 “我国发展燃料电池 汽车 还面临很多困难,推动我国燃料电池 汽车 商业化还需行业共同努力。”林琦说。
  
 本文源自中国青年报客户端。阅读更多精彩资讯,请下载中国青年报客户端(http://app.cyol.com)

7. 燃料电池行业深度报告:燃料电池汽车处于爆发前夕

   1、氢能源:下一代基础性能源材料  
    国际能源转型一直沿着从高碳到低碳、从低密度到高密度的路径进行,而氢气是目前公认 的最为理想的能量载体和清洁能源提供者。氢气无毒无害,反应物为水,绿色清洁,热值高, 相当于汽油的三倍,被誉为“21 世纪的终极能源”。 
       短期:降低 汽车 尾气排放,城市环境保护。   以北京市为例,机动车排放了全市 58%的氮 氧化物、40%的挥发性有机物和 22%的细颗粒物。氢能源自柴油发动机应用的车辆市场 具有推广价值,而柴油发动机车辆在港口/码头、城市公交、跨城货运等领域带来显著的 污染。 
       中长期:降低石化能源对外依赖。   中国石油集团经济技术研究院发布《2018 年国内外油 气行业发展报告》中提到,2018 年中国的石油进口量为 4.4 亿吨,石油对外依存度升至 69.8%;天然气进口量 1254 亿立方米,对外依存度升至 45.3%。 
        2、我国具有全球最大规模的氢资源  
     工业氢气提纯具备充足的氢资源,我国氢气产能规模全球最大。   从氢气生产来源来看, 化石资源制氢居主导地位,全球主要人工制氢原料的 96%以上都来源于传统化石资源的热化学 重整,仅有 4%左右来源于电解水。从地域分布上看,亚太地区的氢气产能最大,而我国是目 前氢气产能最大的国家,也是氢气生产分布最广的国家。目前国际制氢年产量 6300 万吨左右, 我国每年产氢约 2200 万吨,占世界氢产量的三分之一,是世界第一产氢大国。 
        我国的煤炭和天然气资源储备丰富,以上两者也是我国人工制氢的主要原料,占比分别 为 62%和 19%。   随着煤制合成气、煤制油产业的发展,煤制氢产量逐年增多,其规模较大、成 本较低,制氢成本约 20 元/kg,煤气化制氢具有较大发展潜力。电解水制氢在我国氢气占比中 仅占约 4%,但在日本氢工业中占有特殊的地位,其盐水电解制氢的产能占日本所有人工制氢 总产能的 63%。 
        我国氢能资源在全球范围具有一定性价比优势。   目前我国加氢气成本大约在 70 元/kg, 较美国和日本在成本上仍较高,然而我国的汽油成本显著高于美国,从氢油比(氢气成本/汽 油成本)角度考虑有一定性价比优势。 
        我国氢能源的使用仍有极大待开发潜力。   当前我国大部分氢气应用于工业领域,主要被 合称氨、合成甲醇、石油炼化、回炉助燃灯消耗,属于自产自消的模式。每年仅有不到 500 吨的氢气对外部市场供应和销售,氢资源利用潜力巨大。 
        各类氢气来源存在一定的技术和成本差别,电解制氢与煤炭、天然气制氢成本仍有较大 差距。   氢气的制备主要可分为制取氢气和提纯氢气两大类,煤炭制氢成本最低,为 0.8 1.1 元/立方米,天然气制氢成本为 0.9 1.5 元/立方米,我国的电解制氢发展仍处早期,成本在 3 元/立方米左右,未来还有较大下降空间。 
        地方政府和能源企业对于工业氢气的利用有切实的发展意愿   。我国每年弃光、弃风、弃 水等大约有 1000 亿度电,工业副产氢也有 1000 万吨以上,对于这两个“1000”的利用,全国 多地政府和能源企业都已积极开展相应布局。 
     我国氢能利用已具备一定技术基础,从航天、军用逐渐向民用推广,在华北、华东和华 南等地区形成了氢能源区域产业集群。  
       航天领域:   航天 科技 集团六院北京 11 所研制的 YF-75 氢氧发动机。迄今为止,YF-75 发 动机已参加 97 次飞行任务。2004 年探月工程正式开展后,YF-75 发动机是嫦娥系列任务 中主力装备。2019 年嫦娥四号探测器首次在月球背面预选区域着陆,也由来自装备 YF-75 氢氧发动机的长三甲系列火箭完成。 
       军用领域:   中国船舶重工集团开发的燃料电池潜艇,从斯特林发动机替换为氢燃料电池, 基于质子交换膜燃料电池和金属储氢技术。 
       先进技术的民用化推广。   航天 科技 集团六院长期致力于氢能在火箭发动机领域的研究和 应用,在燃料电池技术领域,拥有质子交换膜燃料电池系统动力应用、可再生能源储能 应用及泵阀关键部件技术,具备了百千瓦级氢氧/氢空及再生燃料电池系统研制能力。中 船重工七一二所研发的首台 58 千瓦燃料电池发动机, 2019 年 5 月顺利通过中汽中心天   津   汽车 检测中心的强制性检验,这款型号为 CSIC712-FCE58A 的发动机,采用氢空质子交 换膜燃料电池电堆,是七一二所面向城市客车开发的燃料电池发动机。 
     1、氢能源的重要应用-燃料电池  
     氢能源为电力能源的重要载体   。电能替代是 社会 能源消费的长期趋势 ,氢能源最终通过 电力能源实现。合理利用氢能,一方面能提高能源利用效率,减少能源浪费,另一方面可以控 制环境污染,降低大气污染和温室气体排放。从中长期来看,加大氢能的发展利用将进一步保 障我国能源安全。 氢能源的单位热值远高于汽油、柴油、焦炭等,将满足电力能源的供给需求错配。 
     氢能 源的热值较高,通过大型移动的运输设备,未来将会使能源消耗错配做到极致。   氢能既可作为 化学能源形式的长周期储备,又可于交通领域应用在长途运输、大卡车、海洋运输等环节,还 可以应用在高温加热的工艺产业上。清华大学教授毛宗强在氢能行业会议上表示,氢能的应用 是多方面的,也是未来有望代替石油和天然气的清洁能源。 
        
        燃料电池 汽车 是氢能源利用极具成长性的下游行业。   虽然氢燃料电池 汽车 ( FCEVs )在 我国目前处于起步阶段,但燃料电池 汽车 性能的优秀不可否认,目前国外大规模销售的 FCEVs 各方面性能与内燃机 汽车 不相上下,有些远优于电动 汽车 (BEVs)。燃料电池具有环境友好、 发电效率高、噪音低、可用燃料范围广等优点,当前我国燃料电池产业的主要发展瓶颈在于生 产成本高(铂催化剂价格高昂)、技术水平较国际落后以及氢产业链配套设施不够成熟,远期 的发展空间巨大。 
        燃料电池 汽车 具有能源补给的时间优势和经济性劣势,运营市场将会是起步阶段重点发 展领域。   燃料电池 汽车 的续航里程普遍在 500 公里以上,和目前中高端纯电动 汽车 续航相当, 而从能源补给时间角度,燃料电池 汽车 加氢仅需不到 3 分钟,远低于插电混动或纯电动 汽车 。 由于目前燃料电池 汽车 产业发展仍处于初期阶段,加氢站等基础设施投入以及整车制造成本都 较高,短期来看燃料电池 汽车 比较适合的应用场景预计会是运营市场。 
        质子交换膜燃料电池对我国氢能产业发展更具有现实意义。   氢燃料电池按不同电解质可 分为碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池和质子交换膜 燃料电池(PEMFC)。其中,质子交换膜燃料电池的工作温度最低,还具有响应速度快和体积小 等特点,目前最契合新能源 汽车 的使用,被认为是未来燃料电池 汽车 最重要的发展方向之一。 
     锂电池在乘用车领域更具优势。   锂电池产品较燃料电池有更简单的产品结构,更清晰的 发展路径和更成熟的产业化分工,当前产品系列性能也区域丰富。锂电池性能的不断提升,正 逐渐蚕食众多原本燃料电池具有领先优势的应用领域。在 2019 年燃料电池行业会议中,上海 捷氢 科技 有限公司系统开发部总监表示,他们对比了纯电动车型和氢燃料电池 汽车 型在未来的 竞争优势,从成本上来说,乘用车续航里程 400 公里以下,燃料电池相对纯电动是没有优势的。 
     燃料电池的产业化应用,尚处于中长期能源战略布局的地位。  
       商用车领域燃料电池驱动定位为辅助能源:   潍柴动力董事长谭旭光表示:发展新能 源车并不是要完全取代柴油车,而是应用在适合采用新能源车辆的工况中。比如城 市公交、港口牵引车等,推广新能源车辆,使其与柴油车搭配工作,能够兼顾经济 效益与 社会 环保。他甚至预言,未来 20-30 年,氢将成为能源结构的重要组成部分, 但市占率不会超过 10%。 
       当前船舶动力 95%是柴油体系,尚未实现天然气化,燃料电池中长期或存增长空间   。 受成本、安全、寿命等多种因素影响,燃料电池在民用船舶领域目前尚不具备大规 模商业化应用的条件,但是随着国际公约法规对船舶排放要求的日益严格,燃料电 池系统卓越的排放性能有可能将其推向船舶动力市场的新风口,尤其是豪华游轮在 船舶行业逐渐崛起的今天,燃料电池系统噪音低的优势完美满足了豪华游轮对舒适 度的要求。 
     2、氢能源利用涉及到的关键技术  
     氢能源制取-混合气体的变压吸附技术(PSA)。  
      基本原理:变压吸附的基本原理是:利用吸附剂对气体的吸附有选择性,即不同的 气体(吸附质)在吸附剂上的吸附量有差异和一种特定的气体在吸附剂上的吸附量 随压力变化而变化的特性,实现气体混合物的分离和吸附剂的再生。 
      当前应用:变压吸附技术在石油化工、医药、食品饮料等行业具有广泛应用,四川 天一 科技 、上海化工研究所和北大先锋公司是国内领先的变压吸附系统设计建设机 构。在石化领域,PSA 法得到的氢气纯度可达到 99.9%以上水平(燃料电池需求纯度 为 99.99%)。上市公司:天科股份(西化院下属)。 
        氢能源运输-从拖车输送到管道输送。   目前钢企副产氢气是加氢站氢气的主要来源,其被 使用高压氢气瓶集束拖车运输。举例来说,若 1 辆拖车装有 18 个高压氢气瓶,每次可以以 20MPa 的压力运送 4000Nm3的氢气。平时站区里停泊 2 辆拖车,另有 1辆拖车往返加氢站和氢源之间, 运送氢气,并替换站内空车。基于 200km 左右运输距离和每天 10 吨的运输规模来测算,气氢 拖车的成本可以达到 2.02 元/kg。 
        氢能源运输-从高压气罐到管道输送。  
       高压气罐:   依托 LNG 产业基础,一般长管储氢压为 15 20MPa,一般单管储氢量为 17 20k,将 CNG 储气管进行产品升级可实现。 
       液氢储罐:   依托航天工业技术基础,单次送氢量为气罐 10 倍以上。额外增加氢气液 化和液氢罐成本,目前测算单日加氢量达到 1000kg 以上具有比较经济性。 
       管道运输:   依托天然气产业基础,瓶颈在成本。在美国,现有的氢气管道系统约为 2400 公里,而在欧洲已有近 1600 公里,中国的管道运氢量在 400 公里。中石油管道 局 2014年完成国内最大氢气管道建设施工:投资1.54亿,长度25km,设计压力 4Mpa, 年输氢量 10.04 万吨。单位投资为天然气管道 2 倍左右。 
        氢能源储存加注:   加氢站内的储氢罐通常采用低压(20 30MPa)、中压(30 40MPa)、高 压(40 75MPa)三级压力进行储存。有时氢气长管拖车也作为一级储气(10 20MPa)设施,构成 4 级储气的方式。国外市场大多采用的 70MPa 氢气,国内大部分采用了 35MPa 氢气压力标准。 目前中国的加氢站加氢能力最高的为 1000-2000kg/d,最低的为 100kg/d。 
       站内制氢   :原材料为天然气,重整制氢气。单个站投资规模会在 300~500 万美元的 水平。 
       外供加氢   :中国主要的加氢站方式。单个站投资规模在

燃料电池行业深度报告:燃料电池汽车处于爆发前夕

8. 新能源锂电池将迎来新一轮小爆发,你提前布局了吗?(附受益股)

  国内纯电动 汽车 单车带电量普遍提升。 EV 乘用车 1H20 年平均单车带电量为 50.49Kwh,同比增加 7.73%。EV 客车单车平均带电量为 211.94Kwh ,同比增加 17.72%。单车带电量的提升是未来纯电动 汽车 发展的必然趋势,或将成为未来对燃油车替代的发力点。
    预计 2020 年上半年欧洲累计销量 38 万辆,同比增长超 50%。 从我们跟踪的欧洲八国数据看,1-6 月 BEV+PHEV 销量共 334783 辆,同比+60.6%。其中 BEV 累计销量 191737 辆,同比+35.9%,PHEV 销量143046 辆,同比+112.6%。我们预计 1H20 欧洲整体销量约 38 万辆,同比增长 52%。我们认为增长较快除了基数原因,更多的是欧洲市场政策的落实和车企推进力度加大。
   (1)电池及材料供应体系:全球供应体系格局已经形成,宁德时代、LG将成为全球动力电池龙头成长性最强的企业,其供应链核心品种叠加竞争格局呈现一超多(无)强状态的个股将持续带来超额收益,
   (2)传统零部件双击机会:长期看, 汽车 电动化后,市场集中度会比现在高。目前全球 汽车 销量约 8600 万台,销量最大的丰田和大众均在 1000万+,CR2 24.4%。我们预计,由于电动车核心技术和应用更加偏软,规模经济更大,客户壁垒更高,未来龙头一家份额可能就会达到 20%-30%,甚至更高。同时,我们认为,未来龙头车厂的盈利能力将会比现在更高,目前头部车企净利率集中在 6%-10%之间。传统零部件有两个逻辑:(1)份额更大,因为下游客户份额变大,行业集中度变高;(2)价值量增加。
   
   (3)设备类公司将迎来新一轮向上周期。锂电设备上一轮需求爆发周期是 2014-2017 年,2018-2019 年由于国内终端需求增速放缓以及动力电池行业进入加速优胜劣汰阶段,锂电设备厂商新增订单以及交付也进入了增速放缓阶段。随着全球一线车企以及动力电池厂为新车型加速推出以及需求爆发做准备,预计 2020 年下半年锂电设备厂商将迎来新一轮爆发,与上一轮周期相比,结构上会发生较大变化,切入全球一二线锂电池客户的设备厂将更加受益于下游扩产加速以及市场集中度提升带来的需求增长。
     (1)挖掘潜在全球一线供应链标的:除了市场最为热点的特斯拉产业链之外,欧洲传统车企 2020 年起加速推动电动化车型加速推出,与特斯拉一起构建了全球一线电动 汽车 供应链体系。
   (2)行业发展带来市场忽略的边际增量:欧洲一线车企快速发展带来国内二线动力电池厂 历史 性机遇,大众收购国轩股权为此类代表,中国中游供应链的不可替代性凸显,进入国际一线客户的国内二线供应商有望迎来拐点;阻燃剂行业受益于新能源 汽车 发展带来需求增量。
   
    我们预计 2020 为海外电动车放量元年,政策与消费共振。 预计随着疫情恢复,及优质新车型陆续推出,全球新能源 汽车 下半年产销开始显著放量。1)需求端:国内中游 7 月订单大幅好转,预计中游龙头环比+30%以上;2)政策端:欧盟或加码电动车政策,在实施严苛碳排放政策同时,给予补贴、免增值税、加大基础设施投资等刺激政策,并且欧洲各国均加大对电动车补贴力度(德国、英国、意大利、西班牙)激发终端用户需求;
   7 月预期国内中游锂电需求恢复,龙头订单预计环比大幅增长,迎来基本面拐点。短期疫情影响不改电动 汽车 发展趋势,全球电动化正迈入供给端优质车型加速期,未来三年是全球主流供应链加速爆发的趋势性机会。
     宁德时代(动力电池全球龙头之一)、恩捷股份(湿法隔膜全球龙头)、璞泰来(负极材料快速进步者)、先导智能(锂电设备国内龙头)、新宙邦(电解液海外供应链)、亿纬锂能(业绩高增长的全球二线动力电池龙头)等龙头标的。