雷达的波段划分

2024-05-12 07:56

1. 雷达的波段划分

最早用于搜索雷达的电磁波波长度为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长度变为22cm。 当波长为10cm的电磁波被使用后,其波段被定义为S波段(英语Short的字头,意为比原有波长短的电磁波)。在主要使用3cm电磁波的火控雷达出现后,3cm波长的电磁波被称为X波段,因为X代表坐标上的某点。为了结合X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达,该波段被称为C波段(C即Compromise,英语“结合”一词的字头)。在英国人之后,德国人也开始独立开发自己的雷达,他们选择1.5cm作为自己雷达的中心波长。这一波长的电磁波就被称为K波段(K = Kurz,德语中“短”的字头)。“不幸”的是,德国人以其日尔曼民族特有的“精确性”选择的波长可以被水蒸气强烈吸收。结果这一波段的雷达不能在雨中和有雾的天气使用。战后设计的雷达为了避免这一吸收峰,通常使用频率略高于K波段的Ka波段(Ka,即英语K-above的缩写,意为在K波段之上)和略低(Ku,即英语K-under的缩写,意为在K波段之下)的波段。最后,由于最早的雷达使用的是米波,这一波段被称为P波段(P为Previous的缩写,即英语“以往”的字头)。该系统十分繁琐、而且使用不便。终于被一个以实际波长划分的波分波段系统取代,这两个系统的换算如下。原 P波段 = 现 A/B波段原 L波段 = 现 C/D 波段原 S波段 = 现 E/F 波段原 C波段 = 现 G/H 波段原 X波段 = 现 I/J 波段原 K波段 = 现 K 波段

雷达的波段划分

2. 雷达工作的波段是怎样划分的???


3. 雷达波段的标准划分

 波段代号 标称波长[cm] 频率波长[cm] 波长范围[cm]L 22 1-2 30-15 S 10 2-4 15-7.5 C 5 4-8 7.5-3.75 X 3 8-12 3.75-2.5 Ku 2 12-18 2.5-1.67  K 1.25 18-27 1.67-1.11 Ka 0.8 27-40 1.11-0.75 U 0.6 40-60 0.75-0.5 V 0.4 60-80 0.5-0.375 W 0.3 80-100 0.375-0.3  波段代号标称波长[cm]频率[GHz]波长范围[cm]L221-230-15S102-415-7.5C54-87.5-3.75X38-123.75-2.5Ku212-182.5-1.67K1.2518-271.67-1.11Ka0.827-401.11-0.75U0.640-600.75-0.5V0.460-800.5-0.375W0.380-1000.375-0.3

雷达波段的标准划分

4. 雷达用的是什么波?

问题一:雷达原理?雷达用的是什么波?  雷达(radar)原是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。 
  雷达发射机产生足够的抚磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 
  为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 
  其中S:目标距离 
  T:电磁波从雷达到目标的往返传播时间 
  C:光速 
  雷达使用的是微波。 
  
   问题二:雷达接收和发射的分别是什么波  雷达接收和发射的均是完全相同的无线电波(电磁波)。 
  英文Radar的译音“雷达”,是英文词组radio detection and ranging各单词字母的缩写,译成中文意思为无线电探测和测距,即用无线电电子学的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”,是一种利用电磁波探测目标的电子设备。 
  雷达工作时,发射无线电脉冲波对目标进行照射,如果被照射物体是金属或其他导体,会对无线电波产生反射,雷达接收其反射回波。根据发射波与回波的时间差,获得目标至电磁波发射点的距离,根据多普勒效应的频率差,测定距离变化率(径向速度),根据发射波束的方向、方位,测出被测目标的方向、高度等信息。 
  
   问题三:什么是雷达  雷达是利用无线电波来测定物 *** 置的无线电设备。 
  电磁波同声波一样,遇到障碍物要发生反射,雷达就是利用电磁波的这个特性工作的。波长越短的电磁波,传播的直线性越好,反射性能越强,因此,雷达用的是微波波段的无线电波。 
  雷达有一个特制的可以转动的无线,它能向一定的方向发射不连续的无线电波。每次发射的时间约为百万分之一秒,两次发射的时间间隔大约是万分之一秒,这样,发射出去的无线电波遇到障碍物时,可以在这个时间间隔内反射回来被无线接收。 
  根据公式2S=ct来确定障碍物的距离S,再根据发射无线电波的方向和仰角,便可以确定障碍物的位置了。 
  利用雷达可以探测飞机、舰艇、导弹以及其他军事目标,除了军事用途外,雷达在交通运梗上可以用来为飞机、船只导航,在天文学上可以用来研究星体,在气象上可以用来探测台风,雷雨,乌云。[ 
  
   问题四:雷达扫描是什么  雷达扫描电磁波 
  雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为无线电探测和测距,即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 
  电磁波,是由同相且互相垂直的电场与磁场在空间中衍生发射的震荡粒子波,是以波动的形式传播的电磁场,具有波粒二象性。电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场种电磁波在真空中速率固定,速度为光速。见麦克斯韦方程组。 
  电磁波伴随的电场方向,磁场方向,传播方向三者互相垂直,因此电磁波是横波。当其能阶跃迁过辐射临界点,便以光的形式向外辐射,此阶段波体为光子,太阳光是电磁波的一种可见的辐射形态,电磁波不依靠介质传播,户真空中的传播速度等同于光速。电磁辐射由低频率到高频率,主要分为:无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。人眼可接收到的电磁波,称为可见光(波长380~780nm)。电磁辐射量与温度有关,通常高于绝对零度的物质或粒子都有电磁辐射,温度越高辐射量越大,但大多不能被肉眼观察到。 
  频率是电磁波的重要特性。按照频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是无线电波、微波、红外线、可见光、紫外线、X射线及γ射线。 
  通常意义上所指有电磁辐射特性的电磁波是指无线电波、微波、红外线、可见光、紫外线。而X射线及γ射线通常被认为是放射性辐射特性的 。 
  
   问题五:雷达是什么  雷达是一种利用电磁波能从远距离外发现目标并测定其位置的电子装备,因其具有阀现目标快,全天候工作等特点,因此在警戒,引导,武器控制,侦查,航行保障,气象观察,敌我识别等方面得到了广泛应用。雷达其按功能可分为警戒雷达引导雷达,武器控制雷达,侦查雷达,航行保障雷达等。此外,雷达按架设位置的不同,可分为地面雷达,机载雷达,舰载雷达等。 
  
   问题六:如何吸收雷达波  吸波涂料一般根据吸收剂不同可分为以下种类: 
  1  铁氧体吸波涂料铁氧体吸波涂料因为价格低廉 , 吸波性能好 , 即使在低频、厚度薄的情况下仍有良好的吸波性能 , 在米波至厘米波范围内 , 可使反射能量衰减 17 ~ 20DdB , 从 50 年代至今仍被广泛应用。按微观结构的不同 , 铁氧体可分为六角晶系铁氧体、尖晶石型铁氧体和稀土石榴石型铁氧体三类。作为吸波材料应用最为广泛的是尖晶石型铁氧体 , 由于尖晶石型铁氧体的介电常数 ε′ 和磁导率 μ′ 比较低 , 用纯铁氧体难以满足高性能的雷达波吸收材料的要求 , 但是把铁氧体粉末分散在非磁性体中而制成的复合铁氧体 , 则可以通过铁氧体粉末的粒径、铁氧体粉末与非磁性体的混合比以及铁氧体组成来控制其电磁参数。目前已研制并广泛应用的有 Ni - Zn 、 Li - Zn 、 Ni - Mg - Zn 、 Mn - Zn 、 Li -Cd 、 Ni - Cd 、 Co - Ni - Zn 、 Mg - Cu - Zn 等铁氧体。 
  2  羰基铁吸波涂料 
  羰基铁吸收剂是目前最为常用的雷达波吸收剂之一 , 它是一种典型的磁损耗型吸波材料 , 磁损耗角可达 40 °左右 , 与高分子粘结剂复合成的吸波涂料具有吸收能力强、应用方便等优点。但是由于羰基铁吸收剂存在着比重大 , 在涂料中体积占空比一般都大于 40 % , 因此导致这种吸波涂料仍存在面密度大的缺点。近期欧洲GAMMA 公司研制了一种新型吸波涂料 , 这种吸波涂料采用以羰基铁单丝为主的多晶铁纤维作为吸收剂 , 可在很宽的频带内实现高吸收率 , 由于这种吸收剂体积占空比为 25 % , 因此重量可减轻 40 % ~ 60 % 。目前 , 该吸波涂料已应用于法国国家战略防御部队的导弹和飞行器 , 同时正在验证用于法国下一代战略导弹弹头的可能性。 
  3  金属超细粉末或金属氧化物磁性超细粉末吸波涂料 
  这类吸波涂料一般是由金属超细粉末或金属氧化物磁性超细粉末与高分子粘结剂复合而成。由于作为吸收剂的金属超细粉末或金属氧化物磁性超细粉末的细化 , 使其组成粒子的原子数目大大减少 , 磁、电、光等物理性能发生质的变化 , 磁损耗较大。这种吸波涂料可以通过调节粉末的粒径、含量、混合比例等来调节吸波涂料的电磁参数 , 以使其达到较为理想的吸波效果。 
  4  陶瓷吸波涂料 
  作为陶瓷吸波涂料的吸收剂主要有碳化硅、硼硅酸铝等 , 与铁氧体、复合金属粉末等吸波剂相比 , 密度低、吸波性能较好 , 还可以有效地减弱红外辐射信号的特点。其中碳化硅是制作多波段吸波涂料的主要组分 , 有可能实现轻质、薄层、宽频带和多频段 , 很有应用前景。碳化硅的粒径、热处理时间等对其吸波性能影响非常大 , 碳化硅在不同处理温度和时间条件下 , 其电阻率变化范围为 10 0 ~ 10 4 Ω・ cm , 通过控制工艺参数 , 可以对其显微结构和电磁参数进行控制 , 获得所希望的吸波效果。 
  5  纳米吸波涂料 
  纳米材料是指材料组分的特征尺寸在纳米量级 (1 ~ 100nm) 的材料 , 它独特的结构使其自身具有量子尺寸效应、宏观量子隧道效应、小尺寸和界面效应 , 金属、金属氧化物和某些非金属材料的纳米级超微粉在细化过程中 , 处于表面的原子数越来越多 ,增大了纳米材料的活性 , 在电磁场的辐射下 , 原子、电子运动加剧 , 促使磁化 , 使电磁能转化为热能 , 从而增加了对电磁波的吸收效果。由于纳米材料在具有良好吸波特性的同时还具有频带宽、兼容性好、面密度低、涂层薄的特点 , 美、俄......>> 
  
   问题七:雷达原理?雷达用的是什么波?  雷达(radar)原是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。 
  雷达发射机产生足够的抚磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 
  为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 
  其中S:目标距离 
  T:电磁波从雷达到目标的往返传播时间 
  C:光速 
  雷达使用的是微波。 
  
   问题八:什么是雷达  雷达是利用无线电波来测定物 *** 置的无线电设备。 
  电磁波同声波一样,遇到障碍物要发生反射,雷达就是利用电磁波的这个特性工作的。波长越短的电磁波,传播的直线性越好,反射性能越强,因此,雷达用的是微波波段的无线电波。 
  雷达有一个特制的可以转动的无线,它能向一定的方向发射不连续的无线电波。每次发射的时间约为百万分之一秒,两次发射的时间间隔大约是万分之一秒,这样,发射出去的无线电波遇到障碍物时,可以在这个时间间隔内反射回来被无线接收。 
  根据公式2S=ct来确定障碍物的距离S,再根据发射无线电波的方向和仰角,便可以确定障碍物的位置了。 
  利用雷达可以探测飞机、舰艇、导弹以及其他军事目标,除了军事用途外,雷达在交通运梗上可以用来为飞机、船只导航,在天文学上可以用来研究星体,在气象上可以用来探测台风,雷雨,乌云。[ 
  
   问题九:雷达接收和发射的分别是什么波  雷达接收和发射的均是完全相同的无线电波(电磁波)。 
  英文Radar的译音“雷达”,是英文词组radio detection and ranging各单词字母的缩写,译成中文意思为无线电探测和测距,即用无线电电子学的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”,是一种利用电磁波探测目标的电子设备。 
  雷达工作时,发射无线电脉冲波对目标进行照射,如果被照射物体是金属或其他导体,会对无线电波产生反射,雷达接收其反射回波。根据发射波与回波的时间差,获得目标至电磁波发射点的距离,根据多普勒效应的频率差,测定距离变化率(径向速度),根据发射波束的方向、方位,测出被测目标的方向、高度等信息。 
  
   问题十:雷达使用的波段哪几种?  一般船用雷达使用S波段和X波段两种

5. 雷达为何分波段??各波段作用的区别???

雷达波段代表的是发射的电磁波频率(波长)范围,非相控阵单雷达条件下,高频(短波长)的波段一般定位更准确,但作用范围短;低频(长波)的波段作用范围远,发现目标距离大。
S波段雷达一般作为中距离的警戒雷达和跟踪雷达。
X波段雷达一般作为短距离的火控雷达。

迄今为止对雷达波段的定义有两种截然不同的方式。较老的一种源于二战期间,它基于波长对雷达波段进行划分。它的定义规则如下:
最早用于搜索雷达的电磁波波长为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长变为22cm。
当波长为10c

雷达为何分波段??各波段作用的区别???

6. 雷达使用的波段哪几种?

雷达工作在超短波及微波波段,其频率范围在30~300000兆赫,相应波长为10米至1毫米,包括甚高频(VHF)、特高频(UHF)、超高频(SHF)、极高频(EHF)4个波段。
在1吉赫频率以下,由于通信和电视等占用频道,频谱拥挤,一般雷达较少采用,只有少数远程雷达和超视距雷达采用这一频段。高于15吉赫频率时,空气水分子吸收严重;高于30吉赫时,大气吸收急剧增大,雷达设备加工困难,接收机内部噪声增大,只有少数毫米波雷达工作在这一频段。
当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。
自动目标识别则可使武器系统最大限度地发挥作用,空中预警机和JSTARS这样的具有战场敌我识别能力的综合雷达系统实际上已经成为了未来战场上的信息指挥中心。

扩展资料
雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。
测量速度原理是雷达根据自身和目标之间有相对运动产生的频率多普勒效应。雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。
从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。
测量目标方位原理是利用天线的尖锐方位波束,通过测量仰角靠窄的仰角波束,从而根据仰角和距离就能计算出目标高度。
测量距离原理是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。
参考资料来源:百度百科-雷达波段

7. 雷达波段的概述

在雷达行业中,以雷达工作频率划分为若干的波段,由低到高的顺序是:高频(HF)、甚高频(VHF)、超高频(UHF)、L波段、S波段、C波段、X波段、Ku波段、K波段和Ka波段。 非相控阵单雷达条件下,高频(短波长)的波段一般定位更准确,但作用范围短;低频(长波)的波段作用范围远,发现目标距离大。

雷达波段的概述

8. 雷达工作在哪些波段,工作在不同波段有什么优点?

最早用于搜索雷达的电磁波波长度为23cm,这一波段被定义为L波段(英语Long的字头),后来这一波段的中心波长度变为22cm。 当波长为10cm的电磁波被使用后,其波段被定义为S波段(英语Short的字头,意为比原有波长短的电磁波)。   在主要使用3cm电磁波的火控雷达出现后,3cm波长的电磁波被称为X波段,因为X代表坐标上的某点。   为了结合X波段和S波段的优点,逐渐出现了使用中心波长为5cm的雷达,该波段被称为C波段(C即Compromise,英语“结合”一词的字头)。   在英国人之后,德国人也开始独立开发自己的雷达,他们选择1.5cm作为自己雷达的中心波长。这一波长的电磁波就被称为K波段(K = Kurtz,德语中“短”的字头)。   “不幸”的是,德国人以其日尔曼民族特有的“精确性”选择的波长可以被水蒸气强烈吸收。结果这一波段的雷达不能在雨中和有雾的天气使用。战后设计的雷达为了避免这一吸收峰,通常使用频率略高于K波段的Ka波段(Ka,即英语K-above的缩写,意为在K波段之上)和略低(Ku,即英语K-under的缩写,意为在K波段之下)的波段。   最后,由于最早的雷达使用的是米波,这一波段被称为P波段(P为Previous的缩写,即英语“以往”的字头)。   该系统十分繁琐、而且使用不便。终于被一个以实际波长划分的波分波段系统取代,这两个系统的换算如下。   原 P波段 = 现 A/B 波段   原 L波段 = 现 C/D 波段   原 S波段 = 现 E/F 波段   原 C波段 = 现 G/H 波段   原 X波段 = 现 I/J 波段   原 K波段 = 现 K 波段 我国现用微波分波段代号  (摘自《微波技术基础》,西电,廖承恩著)    波段代号标称波长(cm)频率波长(cm)波长范围(cm)L221-230-15S102-415-7.5C54-87.5-3.75X38-123.75-2.5Ku212-182.5-1.67K1.2518-271.67-1.11Ka0.827-401.11-0.75U0.640-600.75-0.5V0.460-800.5-0.375W0.380-1000.375-0.3我国的频率划分方法   名称符号频率波段波长传播特性主要用途甚低频VLF3-30KHz超长波1KKm-100Km空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF30-300KHz长波10Km-1Km地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF0.3-3MHz中波1Km-100m地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF3-30MHz短波100m-10m天波与地波远距离短波通信;国际定点通信甚高频VHF30-300MHz米波10m-1m空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信超高频UHF0.3-3GHz分米波1m-0.1m空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz)特高频SHF3-30GHz厘米波10cm-1cm空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz)极高频EHF30-300GHz毫米波10mm-1mm空间波在入大气层时的通信;波导通信名称符号频率波段波长传播特性主要用途编辑本段应用  雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。星载和机载合成孔径雷达已经成为当今遥感中十分重要的传感器。以地面为目标的雷达可以探测地面的精确形状。其空间分辨力可达几米到几十米,且与距离无关。雷达在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。[1]