超导磁浮列车和高温超导磁浮列车有什么区别?

2024-05-15 01:03

1. 超导磁浮列车和高温超导磁浮列车有什么区别?

超导磁浮列车是利用超导磁铁使车体上浮,通过周期性的变化磁极方向而获取推动力的列车。超导磁浮列车的运行除了高速外,还具有无污染、无振动、省能源的特点,可望成为21世纪陆地交通工具的主力。
目前正在研究开发的超导磁浮列车使用的是普通超导材料,列车的时速以达到500公里为开发目标。更加新颖的下一代超导磁浮列车将使用高温超导材料,列车的时速可望达到700公里。
如果把超导磁浮列车的实用化算作100的话,目前的开发研究已处于80的相对阶段,预计在2010年可望实现实用化;而下一代的高温超导磁浮列车则将在2030年左右投入运行。当前世界上对超导磁浮列车的研究,日本的水平领先于世。
为使超导磁浮列车早日实用化,需要开发高温超导体材料,探究在列车高速通过隧道时的空气力学特性,开发磁性屏蔽技术和列车控制系统等技术。还必须认真研究磁性对生物界的影响。

超导磁浮列车和高温超导磁浮列车有什么区别?

2. 超导磁浮列车有什么特点?

超导磁浮列车是利用超导磁铁使车体上浮,通过周期性的变化磁极方向而获取推动力的列车。超导磁浮列车的运行除了高速外,还具有无污染、无振动、省能源的特点,可望成为21世纪陆地交通工具的主力。
目前正在研究开发的超导磁浮列车使用的是普通超导材料,列车的时速以达到500公里为开发目标。更加新颖的下一代超导磁浮列车将使用高温超导材料,列车的时速可望达到700公里。
如果把超导磁浮列车的实用化算作100的话,目前的开发研究已处于80的相对阶段,预计在2010年可望实现实用化;而下一代的高温超导磁浮列车则将在2030年左右投入运行。当前世界上对超导磁浮列车的研究,日本的水平领先于世。
为使超导磁浮列车早日实用化,需要开发高温超导体材料,探究在列车高速通过隧道时的空气力学特性,开发磁性屏蔽技术和列车控制系统等技术。还必须认真研究磁性对生物界的影响。

3. 超导磁力悬浮式列车有什么特点?

它使用高温超导材料,列车的运行速度每小时可达500~700千米,届时从日本的东京到大阪只需1个小时,差不多赶上了波音747飞机的速度,新干线高速铁路将会黯然失色。
超导磁力悬浮式列车除了高速度之外,还具有无噪音、无振动、节省能源等特点,是21世纪颇为理想的运输工具。这种最新式高速列车的技术,日本居领先地位。有报道说,日本人已在1994年11月开始在山梨县研制这种新车辆。它的外形像是一条“眼镜蛇”,可以减少高速运行时的空气阻力,车身采用的是铝合金材料,因此十分轻巧,制造技术中采用了很多航空技术,但是造价可不低,每一辆车的造价要15亿日元哩!
日本的超导磁力悬浮式列车可望于本世纪前制造完成使用,而真正投入商业运营的将是21世纪的事了,那时,这种高速火车真可以与民航飞机相媲美了。
磁悬浮列车

超导磁力悬浮式列车有什么特点?

4. 磁悬浮列车是否应用了超导材料?

经过数十年的发展,时至今日,磁悬浮技术形成了分别以德国和日本为代表的两大研究方向——EMS系统和EDS系统。德国认准的EMS(常导磁吸型)系统,是利用常规的电磁铁与一般铁性物质相吸引的基本原理,把列车吸附上来悬浮运行。日本看好的EDS(超导磁斥行)系统,则是用超导的磁悬浮原理,使车轮和钢轨之间产生排斥力,使列车悬空运行。目前两种车型都达到了500公里左右的时速,两种方案都切实可行,孰优孰劣,也确实难分高下。
   世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后,从浦东龙阳路站到浦东国际机场,三十多公里只需6~7分钟。上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。
   电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。
  电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。

5. 如何解决有关超导磁悬浮列车的难题 提出两点针对性的建议

悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。 
  
  电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 
  电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 
  
  超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。 
  超导磁悬浮列车的车辆上装有车载超导磁体并构成感应动力集成设备,而列车的驱动绕组和悬浮导向绕组均安装在地面导轨两侧,车辆上的感应动力集成设备由动力集成绕组、感应动力集成超导磁铁和悬浮导向超导磁铁三部分组成。当向轨道两侧的驱动绕组提供与车辆速度频率相一致的三相交流电时,就会产生一个移动的电磁场,因而在列车导轨上产生磁波,这时列车上的车载超导磁体就会受到一个与移动磁场相同步的推力,正是这种推力推动列车前进。其原理就像冲浪运动一样,冲浪者是站在波浪的顶峰并由波浪推动他快速前进的。与冲浪者所面对的难题相同,超导磁悬浮列车要处理的也是如何才能准确地驾驭在移动电磁波的顶峰运动的问题。为此,在地面导轨上安装有探测车辆位置的高精度仪器,根据探测仪传来的信息调整三相交流电的供流方式,精确地控制电磁波形以使列车能良好地运行。  
  推进系统:磁悬浮列车的驱动运用同步直线电动机的原理。车辆下部支撑电磁铁线圈的作用就像是同步直线电动机的励磁线圈,地面轨道内侧的三相移动磁场驱动绕组起到电枢的作用,它就像同步直线电动机的长定子绕组。从电动机的工作原理可以知道,当作为定子的电枢线圈有电时,由于电磁感应而推动电机的转子转动。同样,当沿线布置的变电所向轨道内侧的驱动绕组提供三相调频调幅电力时,由于电磁感应作用承载系统连同列车一起就像电机的"转子"一样被推动做直线运动。从而在悬浮状态下,列车可以完全实现非接触的牵引和制动。 
  通俗的讲就是,在位于轨道两侧的线圈里流动的交流电,能将线圈变为电磁体。由于它与列车上的超导电磁体的相互作用,就使列车开动起来。列车前进是因为列车头部的电磁体(N极)被安装在靠前一点的轨道上的电磁体(S极)所吸引,并且同时又被安装在轨道上稍后一点的电磁体(N极)所排斥。当列车前进时,在线圈里流动的电流流向就反转过来了。其结果就是原来那个S极线圈,现在变为N极线圈了,反之亦然。这样,列车由于电磁极性的转换而得以持续向前奔驰。根据车速,通过电能转换器调整在线圈里流动的交流电的频率和电压。 
  
  推进系统可以分为两种。“长固定片”推进系统使用缠绕在导轨上的线性电动机作为高速磁悬浮列车的动力部分。由于高的导轨的花费而成本昂贵。而“短固定片”推进系统使用缠绕在被动的轨道上的线性感应电动机(LIM)。虽然短固定片系统减少了导轨的花费,但由于LIM过于沉重而减少了列成的有效负载能力,导致了比长固定片系统的高的运营成本和低的潜在收入。而采用非磁力性质的能量系统,也会导致机车重量的增加,降低运营效率。 
  导向系统:导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和斥力。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。

如何解决有关超导磁悬浮列车的难题 提出两点针对性的建议

6. 超导磁悬浮列车的工作原理是怎样的?

普通火车由于车轮与车轨之间存在着摩擦力,最高时速不可能超过300千米。于是,人们设想制造一种不靠车轮行驶的列车。就是说,列车行驶时不与车轨接触,而是浮在车轨上,只与空气摩擦,这样受到的阻力就小得多了,列车自然也就能跑得更快。现在这一设想已经实现了。人们利用超导磁体产生磁场,使它与另一磁场产生斥力,而这种斥力又使列车悬浮起来并且推动列车前进。这样一种没有车轮的新型列车诞生了,这种列车就是“超导磁悬浮列车”,时速可达到300千米以上,甚至达到500千米,这个速度都快赶上现在飞机的速度了。超导磁悬浮列车的乘客不会感到列车的颠簸,也不会听到车轮与铁轨的撞击声。它将是陆地上理想而舒适的交通工具。

7. 利用超导体制造的磁悬浮列车为什么时速可达几百千米?

摩擦力小,接触面积小,汽车,火车速度慢,因为它们的动能都被摩擦中消耗了,
磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此只受来自空气的阻力。

让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹。

复制来的一些

利用超导体制造的磁悬浮列车为什么时速可达几百千米?

8. 低温超导磁悬浮原理

超导磁悬浮是利用
磁铁的
同极相斥
原理制造的,同时必须达到速度才可以建立起稳定的波浪电场。超导磁系列主要为日本制造的。现目前还没有正式投入使用的铁路
但要记住,上海龙阳路到浦东机场的磁悬浮列车,是德国,也就是德意志的技术,是常导磁系列,他没有利用磁铁的是否同极还是异极的问题
他是利用,磁铁对钢铁材料的吸引作用实现悬浮的,而电磁铁只能让他保持悬浮而不可以前进,
从而车上还有一个直线电机(相当于把电动机的绕组铺平)产生直线涡流,这个涡流由线圈作用于轨道上的感应钢板而前进。
所以,轨道不需要通电,轨道上只有感应钢板,感应钢板不仅作为车中电磁铁吸引感应钢板使其悬浮的作用,还具有使直线电机与感应钢板之间建立涡流而前进和制动的作用。(制动也是利用直线电机,利用电涡流效应)
超导磁悬浮车身必须是超导磁体,超导磁悬浮列车具有比常导型更高的速度,但同时相对的说,他看起来也更加的不太安全。
因为列车并不和常导型的那种那样扣在轨道上,而是悬浮于轨道上空,和轨道没有任何接触(这里指扣件),所以如果高速时候,假设轨道(超导型的轨道必须通电,就是说轨道有电磁铁)或车上任何一方电力中断,就会导致车辆脱离轨道,虽然日本人说这些事不会发生,但假设发生了怎么办?
但他可以轻松超过500公里的速度,而常导的一般就在400多公里速度几乎是极限了。但他由于是扣在轨道上,即使再严重事故,最多是车体和轨道摩擦,而不会脱落,除非扣件被彻底损坏,但那是车梁,也不容易损坏
鉴于这些那些的优点,超导磁悬浮列车就是利用目前书本常说的,利用磁铁的同性相斥原理制造的,但必须达到80公里左右,磁场才可以达到足够的波浪状滚转,使其稳定悬浮并且前进,他不需要使用直线电机,而且相比于常导的,拥有更加节能的特性(仅看车的一方,由于轨道通电,所以事实上也不节能)
但缺点比起常导的要多得多,最重要的就是安全了。还有就是轨道需要通电,消耗大量电能。
这些磁悬浮只分
超导磁和常导磁
两类
超导磁的意思就是说,他是将电磁铁线圈冷冻,让线圈电阻几乎为0,形成超导。从而几乎不发热。
常导磁就是普通环境下的电磁铁了
高温还是低温超导磁的意思其实是说,,该磁铁在那个温度时候,他的绕组线圈可以形成超导,比如通常都需要-200度一下,但开发出的新材料,却可以让他在-170度左右实现超导,从而减小制冷机组的负载