定向井施工技术

2024-05-16 04:17

1. 定向井施工技术

地热资源开发利用需要“回灌开发”模式。回灌开发是在同一施工地点开凿两眼或两眼以上地热井,一眼作为开采井,另一眼作为回灌井。受城市用地面积的限制以及运行管理的需要,多以“对井”的方式成井。对井井口直线距离在2.5~10m之间,为防止开采、回灌地热流体短时间内相互干扰,井底距离一般保持在800m以上,这就需要有定向井施工技术的支持。
(一)定向井设计
定向井设计原则是为实现钻井目的,合理选择目标点的层位、确定靶区半径,尽可能选择简单的井身剖面类型;设计的基本数据包括地面井位坐标、井底坐标、方位角、井底水平位移、造斜点位置、最大井斜角。定向井设计前要了解设计井区的地质条件,如地层、岩性、压力、倾角、倾向、断层等。还要了解地层造斜特性(以便利用地层的方位漂移规律),分析井区已有定向井资料等,从设计上避免井下复杂情况发生。
地热井不同于石油开采井。首先,地热井要有泵室,泵室为直井段;其次,以扶盆地热储层在一定范围内目的层可近似看作水平无限延伸(断裂型地热井除外),因此,定向井目标靶区半径可适当放大,这些都为定向井设计提供了方便。
1)井身剖面设计:定向井井身剖面类型多种多样,常见的有三段制(多目标、较浅井)和五段制(小位移、较深井),选用的原则是保证达到钻井目的;尽可能简单,利于安全、快速地进行作业以降低钻井成本。地热定向井多用五段制,即直井段、增斜段、稳斜段、降斜段、直井段。
2)造斜点设计:造斜点的选择是定向井成功的关键因素之一。一方面定向井施工要求造斜点岩石结构比较稳定、可钻性比较均匀,避免岩石破碎段、流砂层或易坍塌等复杂地层,同时岩石的硬度应能起到对造斜钻具的支撑作用。另一方面造斜点的深度应根据设计井的垂直井深、水平位移大小和选用的井身剖面类型而决定。实际工作中往往把造斜点选择在尽可能浅的地层中,以利于用尽量小的井斜达到理想的成井水平位移。
3)最大井斜角设计:井斜角是钻具行迹与垂直方向的夹角,主要依据钻井设备定向能力、垂直井深与目标水平位移确定。大量的钻井实践证明,井斜角小于15°,方位不稳定,容易漂移。井斜角大于45°,施工难度较大,井壁易失稳,所以,最大井斜角最好控制在15°~45°之间。
(二)定向井施工安全措施
由于定向井井眼形状复杂,水平位移较大,易发生井下复杂情况和产生井下事故。
1)压差卡钻。在定向井施工中,斜靠在井壁上的钻具与井壁的接触面积大,作用在井壁上的正压力也增大,易发生压差卡钻。预防措施主要是采用润滑性能优良的钻井液:①加入润滑剂使泥饼摩擦系数小于0.2;②采用混油泥浆、混油量8%~15%;③下套管及电测井之前加1.5%~2%的固体润滑剂,保证顺利施工。
2)键槽卡钻。定向井钻进和起下钻过程中,钻具长时间拉、摩、碰井壁,容易形成键槽。预防措施有:①在曲率较大的井段,定期下入键槽破坏器,破坏键槽;②认真记录起下钻遇阻遇卡位置,结合测斜资料分析,提前破坏处理。
3)其他防卡措施:钻井液应具有良好的净化系统,至少配备三级净化装置,保证钻井液含砂量不大于0.5%;控制钻井液,使其屈服值不小于6Pa,提高携带岩屑能力,保证井眼干净。
(三)定向井施工实例
目前,天津地区地热定向井有90对之多,积累了在中低温沉积盆地地热定向井的施工经验,下面以SR19D,SR20D基岩地热定向“对井”为例,对地热定向井施工工艺进行探讨。
1.地层及岩性
该“对井”钻遇地层为第四系平原组,新近系明化镇组、馆陶组,古生界寒武系,新元古界青白口系景儿峪组、龙山组,中元古界蓟县系雾迷山组(目的层),见表4-3。
2.定向井工艺
(1)定向工具的选择
该“对井”定向井段为Φ311mm(  ″)井眼,选用8″无磁钻铤、  ″纳维钻具、2.5°弯接头、高压循环头等定向工具,测量仪器定向井段采用有线随钻测斜仪,增斜和稳斜井段采用自浮式电子测斜仪。

表4-3 设计对井钻遇地层及岩性

(2)定向井设计
1)井身结构设计。根据钻井所在区域地质情况和地热钻井技术特点,设计为四开井,井身结构及套管程序为:一开钻头直径Φ444.5mm,套管直径Φ339.7mm,下深400m;二开钻头直径Φ311mm,套管直径Φ244.5mm,进入基岩2m左右封闭松散软地层;三开钻头直径Φ215.9mm,套管直径Φ177.8mm,进入取水目的层雾迷山组白云岩2m左右下管;所有套管必须符合美国石油协会指定的API标准。四开钻头直径为Φ152.4mm,裸眼成井,井身结构见表4-4。

表4-4 定向井井身结构表

2)井身剖面的设计。根据施工井地层特点和井身结构设计定向井为五段制井身剖面,即直井段、增斜段、稳斜段、自然降斜段和直井段。
3)造斜点的确定。根据施工设计和实际钻进地层分析,SR19D造斜点定在820m,SR20D造斜点定在765m的新近系胶结较好的泥岩中。
4)设计方位角、水平位移、造斜率和最大井斜角。根据地层产状、钻井深度和构造情况,设计SR19D井方位角为135°,水平位移为400m,SR20D井方位角为315°,水平位移为400m,井眼曲率为12°/100m以内,最大井斜角21°。
(3)定向井施工工艺措施和注意事项
1)直井段采用塔式钻具结构,严格按规定参数钻进,井斜角控制在1°以内。
2)定向造斜井段选在新近系上部的泥岩井段,采用有线随钻定向速度较快,但造斜率一般应控制在12°/100m以内,采用2.5°弯接头一般50~70m可达到8°井斜,完成定向工作,在定向造斜时还考虑了转盘增斜作用,使用的牙轮钻头钻进时方位多向顺时针方向漂移即右手漂移规律,因此该井在定向造斜过程中比设计方位提前6°~10°,目的是利用右手漂移规律在钻达目的层时中靶精度更高。
3)转盘钻增斜井段,每钻进30m要测斜一次,根据轨迹测量情况调节钻压和转速,以控制增斜速度和方位,井眼轨迹圆滑,钻至最大井斜角21°可以进行稳斜钻进。
4)斜井段700~1300m为Φ311mm大井眼,钻进过程中岩屑较多,要求泥浆泵排量要大,并根据井内情况和岩屑返出情况,每钻进100~200m进行一次短提下钻,以清理下井壁的“岩屑床”,起钻时要观察井口,防止出现“抽吸”,必要时接方钻杆循环。
5)稳斜段,按照设计要求采用3只扶正器稳斜钻具结构,就可满足新近系Φ311mm井段稳斜要求,每钻进50m要测斜一次,根据轨迹测量情况调节钻压和转速,控制增斜速度和方位,可以达到按所需轨迹施工的目的。而基岩地层Φ215.9mm井段稳斜时,情况相对较复杂,由于地层塑性小,刚性较大,因此钻井过程中受岩层倾角和走向影响,非常容易出现降斜和“跑方位”情况,施工中采用4只扶正器的稳斜钻具结构,并根据测量井斜和方位情况及时调整钻具结构,如采用微增结构或增斜结构进行稳斜, SR19D井遇到稳斜稳不住情况,利用增斜钻具稳斜较理想。
6)四开Φ152.4mm井段为工作的目的层,主要岩性是白云岩,裂隙发育、漏失严重,采用自然降斜钻具结构。
3.钻井液调配
一开井段:钻遇地层为第四系。岩性:粘土、砂层、砂质粘土。钻井液用搬土浆。
二开井段:钻遇地层为新近系。岩性:砂岩、泥岩、砂泥岩。井眼尺寸:Φ311mm,钻井液类型:聚合物防塌钻井液。本井段难点:稳定井壁、大井眼携砂、润滑防卡。
1)钻井液性能为:密度1.05~1.08g/cm3,黏度35~38s,API失水≤8mL,塑性黏度7~10mPa·s,动切力3~6Pa,10s切力0.5~1.0Pa,10min切力1.0~3.0Pa,pH8.5~9。
2)二开钻水泥塞时,加入适量的纯碱,避免水泥对钻井液的污染。定向钻进前,加入极压润滑剂、润滑防塌剂、胺盐等钻井液材料,保证钻井液性能稳定。上部地层机械钻速较快,及时排放沉砂,降低劣质固相对钻井液的污染。
3)完钻前50m调整好钻井液各项性能,保证电测和下套管施工的顺利进行。
三开井段:钻遇地层主要为古生界寒武系和新元古界。岩性:泥质灰岩、泥页岩、泥岩、灰岩。井眼尺寸:215.9mm。钻井液类型:抑制性防塌钻井液。本井段难点:泥岩防缩径、井眼净化、润滑防卡、防漏。
1)钻井液性能:密度1.10~1.15g/cm3,黏度38~48s,API失水≤12mL,塑性黏度8~15mPa·s,动切力5~8Pa,10s切力1.0~2.0Pa,10min切力2.0~4.0Pa,pH8.5~9.0。
2)钻水泥塞时,加入适量的纯碱,避免水泥对钻井液的污染。钻进过程中,补充极压润滑剂、防塌护壁剂、高温降滤失剂等钻井液材料,保证钻井液性能稳定。
四开井段:清水钻进。
4.根据地层情况采取的堵漏措施
SR19D,SR20D两井相距很近,但在施工中发现两井钻遇地层相差较大。尤以古生界寒武系最为突出。SR19D井寒武系厚度为164m,其中昌平组缺失,井底没有出现异常。SR20D井的寒武系厚度355m,其中昌平组厚78m。当钻进至1526m时进尺开始加快至3m/min,当钻进至1534m时出现大漏基本不返浆,上返的少量岩屑中含有大量的风化的灰岩,滴酸起泡剧烈,为防止井下重大事故发生,果断甩掉3个扶正器,继续钻进。1558m再次出现大漏不返浆,提钻,实施静止堵漏。3天的堵漏过程中,多次出现井下危险,但由于采取措施及时、方法得当,保证了生产的安全进行。

定向井施工技术

2. 煤层气井定向井钻井技术

侯岩波 孙建平 张 健 孙 强 李绍勇
( 中联煤层气有限责任公司 北京 100011)
摘 要: 煤层气储层特征等方面与常规天然气储层的差异,决定了煤层气钻井、完井、储层保护等技术的特殊性。在不断试验和总结的基础上,本文研究出了一整套适合煤层气开发的定向井钻井工艺技术及井身质量控制措施,符合产业化、商业化开发煤层气对降低钻井及生产成本的诉求,对经济高效开发煤层气具有借鉴意义。
关键词: 煤层气 定向井 钻井工艺 井身质量
Drilling Technology in Coalbed Methane Directional Well
HOU Yanbo SUN Jianping ZHANG Jian SUN Qing LI Shaoyong
( China United Coalbed Methane Co. ,Ltd,Beijing,100011,China)
Abstract: The reservoir of coal bed methane has many differences from conventional natural gas. These differences determine particularity of coal bed methane in drilling,well completion and reservoir protection. In the foundation of continuous experiment and summarize,this article study out a technical system in the drilling tech- nology in directional coal bed methane well and well quality controlling. These meet the requirements of reduce drilling and production cost in coal bed methane industrialization and commercialization. It has reference signifi- cance in exploiting coal bed methane economically and efficiently.
Keywords: coal bed methane; directional well; drilling technology; well quality
基金项目:国家科技重大专项《山西沁水盆地南部煤层气直井开发示范工程》(编号2009ZX05060)
作者简介:侯岩波,1983年出生,男,河北迁安人,硕士,2009年毕业于中国矿业大学(北京)地质工程专业,现在中联煤层气有限责任公司从事煤层气勘探开发工作。Email:hybjerry@163.com
柿庄南区块位于沁水盆地南部太行山西麓,行政隶属于山西省晋城市沁水县及高平市。该区向北距山西省省会太原260公里,向东南距晋城市60公里,区块总面积约388km2,3#煤层资源丰度1.69亿m3/km2,本区块已成功开发了400余口煤层气井,单井平均产气量>1000m3/d。由于本区山峦重叠,沟壑纵横,森林密布,从保护环境,降低征地及钻前施工难度方面考虑,在局部地形复杂、林地密集地区部署2至4口定向井的丛式井井组进行煤层气开发,丛式井还可有效降低地面集输建设成本及日后排采的生产管理成本,是一种适用于该地区煤层气大规模开发的钻井技术。
1 地质概况
柿庄南区块第四系黄土层厚约30m,开发3#煤层钻遇基岩地层自上而下依次为刘家沟组、石千峰组、上石盒子组、下石盒子组、山西组、太原组(未钻穿),完钻原则为3#煤层底板以下50m,详见表1,总体而言该区地质条件简单,煤储层埋深适中,煤层气资源丰度高,开发条件优越。
表1 柿庄南区块地层特征简表


2 施工设计
以TS04C丛式井井组为例,该井组包括4口定向井,大门方向86°,磁偏角为-2.9°,井口间距5m且呈直线排开,设计时应充分考虑防碰措施,合理安排钻井顺序,使各井设计方位呈放射状分布,井眼轨迹不互相交错,具体设计见图1、图2。
成井工艺:一开井径φ311.15mm,钻至稳定基岩10m完钻,下入φ244.5mm×8.94mm表层套管,固井水泥需返至地面,二开井径φ215.9mm,钻至井深100m左右,开始改用螺杆钻具定向钻进,采用直增稳三段制井身剖面,最终稳斜至3#煤以下50m井深完钻,下入φ139.7mm×7.72mm生产套管固井。

图1 TS04C井组水平投影图


图2 TS04-4D井身轨迹数据

3 钻井设备与钻具
3.1 设备
钻机:TSJ-2000;GZ2000;GZ2600。钻塔:A字型,负荷≥700KN。泥浆泵:3NB-350;3NB-500;3NB-800,排量20~30L/s。动力:12V135,8V190,12V190柴油机。
3.2 钻具及其他
φ127mm钻杆、φ159mm无磁钻铤、φ159mm钻铤、φ165mm(1.25°/1.5°)单弯螺杆、φ214mm稳定器、单点照相/电子测斜仪。
4 钻井工艺
4.1 泥浆工艺
一开用膨润土粉、纯碱、烧碱、少量的聚丙烯酰胺钾盐KPAM及钠羧甲基纤维素CMC等有机处理剂配置低固相钻井液。纯碱及烧碱主要起改善粘土的水化分散相能,起到降失水、增粘和调节泥浆PH值的作用。CMC降失水剂提高了粘土颗粒的聚结稳定性,有利于保持钻井液中细颗粒的含量,形成致密的滤饼,降低滤失量,抑制泥岩等水敏地层膨胀,能有效巩固井壁,此外还有增粘作用,提高钻井液的携带岩屑能力,使含砂量降低,有效控制有害固相含量,减少重复破岩的几率,可延长钻头及螺杆等钻具的使用寿命,提高钻进效率。KPAM具有控制地层造浆的作用并兼有降失水、改善流型及增加润滑性等功能,能起到稳定井壁、降低钻井液滤失量,达到提高钻速的作用。在钻至目的煤层时,钻井液换用清水钻进直至完钻,若钻遇漏层或易垮地层,在保护储层的前提下可适当调整泥浆性能,酌情填加堵漏剂及其他处理剂以保证工程顺利完成。
煤层段钻井液性能:密度1.02~1.05g/cm3,粘度22~25s,pH值7.5~8.5,含砂量<0.2%。
4.2 表层钻进技术
钻具组合:φ311.15mm三牙轮钻头+φ159mm钻铤+φ127mm钻杆。
一开井段为第四系黄土层并含少量卵石,结构疏松,易漏易垮,钻进时主要保证不漏,适当调整泥浆,在钻进开始时要慢钻、吊打,保证不塌、打直,控制泵压、排量,防止把黄土层打漏。
一开采用φ311.15mm牙轮钻头钻进,钻压30~50KN,泵压2MPa。一开钻穿基岩超过10m后完钻,下入φ244.5mm×8.94mmJ55表层套管,套管节箍与地面水平,采用密度1.80g/cm3水泥固井并返至地面。
4.3 直井段钻井技术
钻具组合:φ215.9mm钻头+φ159mm钻铤+φ127mm钻杆。
二开直井段地层以砂岩、泥岩为主,可钻性较好,采用常规塔式钻具结构,为防止井斜钻进参数仍采用轻压吊打原则,并每钻进30m测斜一次,尽早跟踪监测井斜及方位变化,做好防碰,降低施工风险。
4.4 定向造斜段钻井技术
钻具组合:φ215.9mm钻头+φ165mm(1.25°/1.5°)单弯螺杆+φ159mm无磁钻铤+φ159mm钻铤*6根+φ127mm钻杆。
二开钻进至井深约100m时开始定向造斜,造斜定向造斜时要锁死转盘,采用单弯螺杆或直螺杆加弯接头定向造斜。测斜仪器要定期校正罗盘,保证数据采集准确,钻进1至2个单根测斜一次,螺杆钻进井段测斜间距≤20m。应在定向初期控制好井斜、方位,以防工具面常摆不到位,难以控制。在防碰井段及定向造斜段钻进时,钻井队要加密测点,勤计算,勤作图,密切掌握和预测井眼轨迹的变化;勤捞砂样观察是否出现水泥钻屑;认真分析蹩、跳钻现象。钻进参数:钻压50~60KN,泵压3~4MPa,螺杆马达转速200~300r/min,钻进过程中根据井眼轨迹实时调节钻进参数,方位误差变大则转速降低稳步控制方位。
考虑到煤层气井排采生产的特殊性、稳定性与连续性,产能建设单位对井眼轨迹尤其是定向造斜段有着较高要求,井眼轨迹越平滑曲率越小,泵抽系统与地层间的偏磨损耗则越小,越有利于生产单位连续稳定排采,因此要求造斜段造斜率≤4°/30m,造斜和扭方位井段连续三个测点的全角变化率≤5°/25m。
4.5 稳斜段钻井技术
钻具组合:φ215.9mm钻头+φ214mm稳定器+φ159mm无磁钻铤+φ159mm钻铤×6根+φ127mm钻杆。
由于采用直增稳三段制井身剖面,稳斜段原则上不允许下调顶角,为了避免出现定向井井眼轨迹失控现象,钻井施工中应以过程控制为重点。稳斜段要求送钻及钻速均匀,保证钻具负荷均匀,平稳工作。钻具组合在钻穿煤层时尽量去掉稳定器,虽煤层段以下井斜会微降2°~3°,但可有效防止煤层段井径严重垮塌,避免埋钻等事故发生几率,降低钻井施工风险。
根据要求靶点闭合方位误差小于5°,靶区半径20m,稳斜段钻井技术的核心就是严密控制井眼轨迹及方位漂移情况,根据测斜情况及时调整钻井参数及钻具组合,保证该井顺利中靶,主要措施是调整稳定器安放位置,改变稳定器外径,调整钻铤长度及钻压等参数以达到稳斜稳方位效果,在实际应用中,双扶钟摆钻具的井眼轨迹控制效果最佳,双扶可以有效减少局部狗腿问题,使轨迹更平滑,虽然增加了钻井的难度,但是为后期完井和下套管作业打下了较好的基础。钻进参数:钻压80~120KN,泵压3MPa。完钻后下入φ139.7mm×7.72mmJ55生产套管,通过在套管鞋和回压凡尔之间下入一根3m左右的短套管,可有效增加排采口袋长度,在增斜段等狗腿较大井段增加套管扶正器安放个数,采用密度1.65g/cm3水泥固井,水泥浆返至目的煤层以上200m。
5 煤层气定向井钻井新工艺
目前,钻井施工单位为提高钻进效率,普遍采用螺杆钻具和转盘相结合的复合钻进技术,从而减少旗下钻次数,并通过转盘和螺杆水力马达的配合提高机械转速,此外如需调整井斜与扭方位,不需起下钻,可根据井眼轨迹情况随时调整,对钻井轨迹控制及时高效,若与PDC配合组成四合一钻具结构,一趟钻便可完成从二开到完井,可以明显缩短钻井周期并将井身轨迹控制到最优。钻具组合:φ215.9mmPDC钻头+φ165mm.1.25°单弯螺杆+φ159mm钻铤×3m+φ210mm稳定器+φ165mm定向接头(0°)+φ159mm无磁钻铤+φ159mm钻铤+φ127mm钻杆。钻进参数:钻压50~60KN,泵压3~4MPa,螺杆马达转速200~300r/min。
由于对煤层气井定向井井身轨迹及钻进效率要求越来越高,可以引入MWD技术与复合钻进技术相结合,可以更好更方便地控制井眼轨迹,提高钻进效率。由于低成本钻井技术是目前中国煤层气资源开发的趋势,照搬应用常规油气田开发的随钻测井装备及技术会对钻井成本产生较大影响,但随着煤层气的大规模开发和对钻井工程提出越来越高的要求,不久的将来会出现适用于中国煤层气开发现状的MWD和LWD技术,其有着非常广阔的发展前景。
6 结论
(1)采用丛式井钻井技术开发煤层气资源,可节约土地资源,保护环境并有效降低地面集输工程及后期生产运营成本,经济效果显著。
(2)直增稳三段制井身剖面可靠合理,最有利于井身轨迹的控制和钻井施工,适宜煤层气的排采生产。
(3)不同井段在钻进过程中结合地层及井眼轨迹实际情况合理优化钻进参数,过程控制是定向井钻井技术的关键,只有严密监测井身轨迹并结合高效的钻井工艺,才能保证每口井以最优的井眼轨迹顺利中靶。
(4)使用四合一钻具结构有很强的稳斜、稳方位能力,并减少起下钻次数,与MWD相结合可减少井眼轨迹失控风险,并能有效提高钻进时效。
参考文献
吕贵州.2010.定向井的井身轨迹控制[J].陕西煤炭,1:85~86
吴小建.2006.螺杆钻定向钻探技术在煤层气钻井中的应用[J].探矿工程(岩土钻掘工程),11:48~49
席红喜,刘强,刘星光.2005.丛式井钻井技术在陕北油田的应用[J].科技情报开发与经济,15(7):293~294

3. 定向井的定向井的基本应用

 油田埋藏在高山、城镇、森林、沼泽海洋、湖泊、河流等地貌复杂的地下,或井场设置和搬家安装碰到障碍时,通常在他们附近钻定向井。 用直井难以穿过的复杂层、盐丘和断层等,常采用定向井。如:安718段块的井漏、二连地区巴音区块的井,自然方位120-150度。 遇到井下事故无法处理或不易处理时,常采用定向井技术。如:掉钻头、断钻具、卡钻等。 Ⅰ原井钻探落空,或钻通油水边界和气顶时,可在原井眼内侧钻定向井。Ⅱ遇多层系或断层断开的油气藏,可用一口定向井钻穿多组油气层。Ⅲ对于裂缝性油气藏可钻水平井穿遇更多裂缝、低渗透性地层、薄油层都可钻水平井,提高单井产量和采收率。Ⅳ在高寒、沙漠、海洋等地区,可用丛式井开采油气。

定向井的定向井的基本应用

最新文章
热门文章
推荐阅读